Last time: Main orbifolds

\(X \) is topological space, 2nd countable, Hausdorff, with orbifold atlas, i.e., family of pairwise compatible orbifold charts covering \(X \)

- **Orbifold charts** \((U, G, \phi) \):

 \[U \subset \mathbb{R}^m \text{ connected } \# \text{ open, } G \subset \text{Diff}(U) \text{ finite} \]

 \[\begin{array}{ccc}
 U & \xrightarrow{\phi} & X \\
 \downarrow & & \downarrow \\
 U/G & \xrightarrow{\hat{\phi}} & X
 \end{array} \]

 \(\hat{\phi} \) open embedding

- **Embedding of orbifold charts** \(\lambda: (U, G, \phi) \to (V, H, \psi) \)

 \[\lambda: U \to V \text{ embedding s.t. } \begin{array}{ccc}
 U & \xrightarrow{\phi} & X \\
 \downarrow & & \downarrow \\
 V & \xrightarrow{\psi} & X
 \end{array} \]

- **Compatible orbifold charts** \((U_1, G_1, \phi_1) \neq (U_2, G_2, \phi_2) \)

 \(\forall x \in \phi_1(U_1) \cap \phi_2(U_2) \), \(\exists \) chart \((V, H, \psi) \) with \(x \in \psi(V) \) and embeddings \(\lambda_i: (V, H, \psi) \to (U_i, G_i, \phi_i) \)

Given \(x \in X \) and chart \((U, G, \phi) \) with \(\phi(p) = x \):

- Faithful rep: \(G_p \to \text{GL}(m, \mathbb{R}), \quad g \mapsto d_p \lambda_g \)

- \(x \in X \) is called singular if \(G_p \neq 1 \)

- \(\text{Isq}_x(X) = \) isotropy type = conjugacy class of image of \(G_p \) in \(\text{GL}(m, \mathbb{R}) \)

\[\Sigma X \text{ is singular locus } = \{ x \in X : \text{Isq}_x(X) \neq 1 \} \]
Crash Course on proper actions

\[G \times M \text{ action fixing } \varphi_0 \in M \Rightarrow \begin{cases} G \times T_{\varphi_0} M \text{ (linear action)} \\ g \cdot v = d_{\varphi_0} \lambda_g(v) \end{cases} \]

Bochner Linearization Theorem

If \(G \) is compact Lie group acting on \(M \) at fixed pt \(\varphi_0 \in M \),

then action can be linearized around \(\varphi_0 \): \(\exists \) open, \(G \)-invariant \(\varphi_0 \in U \subset M \), \(\forall v \in T_{\varphi_0}M \) and a \(G \)-invariant diffeo \(\phi : U \to V \), \(\phi|_{\varphi_0} = \varphi_0 \).

Idea of Proof: (Dixmier-Kolk)

1) Every neighborhood \(\widetilde{U} \ni \varphi_0 \) contains a \(G \)-invariant neighborhood \(U \).

2) Choose embedding \(\phi : U \to T_{\varphi_0}M \), \(\phi(\varphi_0) = 0 \), \(d_{\varphi_0} \phi = \text{Id} \).

Define "average":

\[\overline{\phi}(x) := \int \limits_{g \in G} d_{\varphi_0} \lambda_g(\phi(\lambda^{-1}_g(x))) \, \, d\mu_G \]

where \(\mu_G \) is left-invariant volume form on \(G \) (Haar measure). Then \(\overline{\phi} : U \to T_{\varphi_0}M \) is \(G \)-equivariant:

\[\overline{\phi}(\lambda_g(x)) = d_{\varphi_0} \lambda_g(\overline{\phi}(x)) \]

3) At \(\varphi_0 \):

\[d_{\varphi_0}(d_{\varphi_0} \lambda_g \circ \phi \circ \lambda_g^{-1}) = d_{\varphi_0} \lambda_g \circ d_{\varphi_0} \lambda_g^{-1} = \text{Id} \]

\[\Rightarrow d_{\varphi_0}(\overline{\phi}) = \text{Id} \]

So there exists \(G \)-invariant neighborhood where \(\overline{\phi} \) is diffeo.

If \(G \) being compact, we can choose a \(G \)-invariant inner product \((\cdot,\cdot)_G \) on \(T_{\varphi_0}M \): if \((\cdot,\cdot) \) is any inner product on \(T_{\varphi_0}M \):

\[(v,w)_G = \int \limits_{g \in G} (g v, gw) \, \, d\mu \]
In particular, if GGM effective action of compact Lie group ω_1 fixed point, so embedding $G \subset O(m,\mathbb{R})$

Remark: Compactness of G is crucial; choose diffeo $\phi : \mathbb{R} \to \mathbb{R}$

such that $\phi(m) = x$, $x \in \mathbb{R}$, $\phi'(x) < 1$, $\phi(n) > 0$. Then

$G \subset \mathbb{R}$, $m \cdot x := \phi^{-1}(x)$. Not linearizable

Recall GGM is proper in $G \times M \to M \times M$, $(g, p) \mapsto (g \cdot p, p)$ is a proper map. This implies:

- $G_p \subset G$ are compact subloops
- $O_p \subset M$ are embedded submanifolds
- M/G is Hausdorff

Examples:

1. Actions of finite groups, more generally compact groups
2. $GL(m,\mathbb{R}) \times \mathbb{R}^m$ is not proper (isotropy group at origin is not compact)

Local Linear Model: around orbit $g \cdot o \in M/G$

$M^{lo}_{p} := (G \times V_p(o_{p}))/G_p$

where:

- $G_p \subset G, V_p(o_p) = T_pM/T_pO$
- $g \cdot [v] := [\partial_p \lambda_g(v)]$ well-defined since $\lambda_g(G_p) \subset O_p$

We have G-action on local model:

$G \cdot M^{lo}_{g}, g \cdot [g', v] := [g'g, v]$
Thm. If \(G \times M \rightarrow M \) is a proper action, for any orbit \(O_p \) there exists a saturated open set \(U \subset O_p \subset M \) and a \(G \)-equivariant diffeomorphism \(\varphi : U \rightarrow M^{\text{loc}}_{O_p} \) with \(\varphi(p) = [e, O_p] \).

Idea of Proof: (Doucet-Oemra & Kolk)

1) 3 slices through \(p \), i.e., \(G \)-invariant submanifolds \(S \subset M \) with \(\text{dim} S = \text{codim} O_p \) s.t.:
 - \(T_q M = T_o q + T_q S \), \(\forall q \in S \);
 - \(g \in G, q \in S \), \(gq \in S \Rightarrow g \in G_p \)

2) Given slice \(S \), we have embedding
 \[
 (G \times S)/G_p : \rightarrow M, \ [g, s] \rightarrow gs
 \]
 This is \(G \)-equivariant for \(G \)-action:
 \[
 g \cdot [g', s] = [gg', s]
 \]

3) Apply Bochner to \(G_p GS \):
 \(S \sim T_p S \sim U_p (O_p) \)

Exercise: Show that if \(\{ U_i \}_{i \in I} \) is a \(G \)-invariant open cover of \(M \) there exist a partition of unity \(\{ \varphi_i \}_{i \in I} \) consisting of \(G \)-invariant functions subordinated to this cover.
Remark: Defining $f: M/\mathcal{G} \to \mathbb{R}$ smooth if for $M \to \mathbb{R}$, this exercise says that M/\mathcal{G} admits smooth partitions of unity.

Corollary Given a proper action $G \times M$ there exists a Riemannian metric g on M which is G-invariant.

Sketch of proof:

1) On G there is left-invariant Riemannian metric g^L invariant also under right G_p-action:
 - choose any left-invariant metric g average over G_p (G_p is compact)

2) On $V_p(G_p)$ choose G_p-invariant inner product $(\cdot, \cdot)_g$

3) $g^L \times (\cdot, \cdot)_g$ metric on $G \times V_p(G_p)$ \\
 \Rightarrow G-invariant metric on M^p

4) Use G-invariant partition of unity to glue G-invariant metrics on local models.

Remark: Conversely, given a Riemannian manifold (M, g) the group of isometries $\text{Iso}(M, g)$ is a Lie group which acts properly on M. Hence, if $G \times M \to M$ is an action by isometries which is effective then G acts properly on M.

(Effective) proper actions \leftrightarrow actions by isometries
More Examples of Orbifolds

Proper actions w/ finite isotropy: \(G \times M \to M \). Then \(X = M/G \) has a natural orbifold structure of \(\dim M - \dim G \).

- By factoring kernel of action \(\Rightarrow \) assume action is effective \(\Rightarrow G_p \in \mathcal{U}(G_p) \) is effective.

- Local normal form \(\Rightarrow \forall G_p \in M/G \) has neighborhood \((U_p(G_p), G_p, \phi_p) \) where

\[
\phi_p : U_p(G_p) \to M/G, \quad \nu \mapsto \pi(\phi(\nu, e. \nu))
\]

where \(\pi : M \to M/G \) \& \(\phi : U \to M^\times \).

Exercise: These charts are pairwise compatible so they give an orbifold atlas for \(M/G \).

We will see that the converse holds:

Thm: Every orbifold \(X \) is isomorphic to \(M/G \) where \(G \) is compact Lie group acting on \(M \) with finite isotropy groups.

Exercise: Let \(G \in M \) be an effective action of a compact, connected Lie group with finite isotropy groups. Show that the orbits form a foliation \(F \) of \(M \); codim \(F = \dim G \) whose leaves are compact with finite holonomy.

Hint: Work on local model.
Foliation \((M, \mathcal{F})\) with finite holonomy & compact leaves:

The leaf space \(X = M/\mathcal{F}\) has a natural orbifold structure of \(\text{clim} \ X = \text{codim} \ \mathcal{F}\).

Local model around a leaf \((M^{\text{lin}}, \mathcal{F}^{\text{lin}})\):

- \(L_0\) leaf of \((M, \mathcal{F})\) with holonomy group \(G^{\mathcal{F}_0} = \text{Hol}(L_0)\)
- \(\tilde{L}_0 \to L_0\) holonomy cover: \(\tilde{L}_0 = L_0/K\) where
 \[G^{\mathcal{F}_0} \to K = K_{\mathcal{F}_0}(\text{Hol}_{\mathcal{F}_0} : \pi_1(L, \mathcal{F}_0) \to \text{Hol}_{\mathcal{F}_0}(L_0)) \]
- \(G^{\mathcal{F}_0} G \subset U_{\mathcal{F}_0}(L_0) : \delta : (v) = [d_{\mathcal{F}_0} \text{hol}(v)]\)

Then

\[M^{\text{lin}} = (\tilde{L}_0 \times U_{\mathcal{F}_0}(L_0))/G^{\mathcal{F}_0}, \quad \mathcal{F}^{\text{lin}} = \text{pr}(\tilde{L}_0 \times \text{lin}) \]

Reeb Stability Theorem

Let \(L_0\) be a compact leaf of \((M, \mathcal{F})\) with finite holonomy group. There exists a saturated neighborhood \(L_0 \subset U_{\mathcal{F}_0}\) and an diffeomorphism \(\phi : (U, \mathcal{F}_0|_U) \to (M^{\text{lin}}, \mathcal{F}^{\text{lin}})\)

If \((M, \mathcal{F})\) has all leaves compact with finite holonomy

\[\Rightarrow L_0 \in M/\mathcal{F} \text{ has neighborhood } U/\mathcal{F} \to U_{\mathcal{F}_0}(L_0)/G^{\mathcal{F}_0}, \]

\[\Rightarrow \text{Orbifold charts } (U_{\mathcal{F}_0}(L_0), G^{\mathcal{F}_0}, \phi_{\mathcal{F}_0}) \text{ for } X = M/\mathcal{F} \text{ where:} \]

\[\phi : U_{\mathcal{F}_0}(L_0) \to M/\mathcal{F}, \quad v \mapsto \tilde{\phi}(\text{pr}(v)) \]

Exercise: Show that these charts are compatible so they form an orbifold atlas for \(X = M/\mathcal{F}\).