II - Singular Spaces

** Aim:** Differential Geometry on spaces which are **singular**, i.e., which are not smooth manifolds.

- Often such singular spaces arise as quotient spaces of smooth manifolds, but to be able to work on them we need to keep track of extra structure.

- Our point of view:

 singular spaces \cong orbit spaces of Lie groupoids

where:

1. Extra structure is encoded by groupoids (e.g., isotropy groups) but groupoids also contain irrelevant extra information.
2. Two groupoids can present the same singular space.

(i) & (ii) \implies Morita equivalence of Lie groupoids

As a warm-up we consider a special case of singular spaces, namely

** Orbifolds**

** Idea:** An orbifold is a topological space X where each $x \in X$ has a neighborhood $V_x \cong U/G$ with $U \subset \mathbb{R}^n$ open and $G \subset \text{Diff}(U)$ a finite group
To formalize this:

Def: Let X be a topological space.

(i) An **orbifold chart** of dimension M for X is a triple (U, G, ϕ) where $U \subset \mathbb{R}^n$ is a connected open set $G \subset \text{Diff}(U)$ is a finite subgroup and $\phi : U \to X$ is a G-invariant open map inducing a homeomorphism $U/G \to \phi(U) \subset X$.

(ii) An **embedding of orbifold charts** $(V, H, \psi) \to (U, G, \phi)$ is an embedding $\lambda : V \to U$ such that $\lambda \downarrow U \to \phi$.

(iii) Two orbifold charts $(U_1, G_1, \phi_1) \neq (U_2, G_2, \phi_2)$ are said to be **compatible** if for any $x \in \phi_1(U_1) \cap \phi_2(U_2)$ there exists an embedding of orbifold charts $\lambda_i : (V, H, \psi) \to (U_i, G_i, \phi_i)$ with $x \in \psi(V)$.

(iv) An **orbifold atlas** of dimension M for X is a collection of pairwise compatible orbifold charts of dimension M, $\mathcal{U} = \left\{(U_i, G_i, \phi_i) : i \in I\right\}$ with $X = \bigcup_{i \in I} \phi_i(U_i)$. Two orbifold atlas \mathcal{U}_1 and \mathcal{U}_2 for X are compatible if $\mathcal{U}_1 \cup \mathcal{U}_2$ is an orbifold atlas.

(v) An **orbifold of dimension** M is a pair (X, U) where X is a second countable, Hausdorff topological space and U is a maximal orbifold atlas.
Rmars

1) Any orbifold atlas \(U \) defines an orbifold (\(U \) is contained in a unique maximal orbifold atlas)

2) Every orbifold is locally compact and paracompact

3) A smooth function \(f: X \to \mathbb{R} \) is a continuous map such that for any orbifold chart \((U, \mathcal{G}, \phi) \), \(f \circ \phi: U \to \mathbb{R} \) is smooth

4) Similarly, a smooth map \(f: X \to Y \) between to orbifolds is a continuous map such that for each \(U \in \mathcal{U} \) there are orbifold charts \((U, \mathcal{G}, \phi) \) with \(\phi(U) \) and \((V, \mathcal{H}, \psi) \) with \(\psi(V) \), and a smooth map \(\overline{f}: U \to V \), such that \(f \circ \phi = \psi \circ \overline{f} \)

Notation: For any manifold \(M \) and \(G \subset \text{Diff}(M) \) we write:

\[
\lambda_g: M \to M, \quad \omega \mapsto g \omega \quad \text{(action by } g \in G) \\
\Sigma_g := \{ \omega \in M : g^\omega = \omega \} \\
\Sigma_G := \bigcup_{g \neq e} \Sigma_g = \{ \omega \in M : G_\omega \neq 1 \} \\
G_G := \{ g \in G : gS = S \}
\]

A subset \(S \subset M \) is called \(G \)-stable if either:

\[gS = S \quad \text{or} \quad gS \cap S = \emptyset \]

Exercise:

\(G \)-stable sets are the connected components of \(G \)-invariant sets. If \(G \) is finite, the open \(G \)-stable sets give a base for topology of \(M \).
We will look at finite subgroups $G \subset \text{Diff}(M)$ and we will show that:

- If (U, G, ϕ) is orbifold chart and $V \subset U$ is a G-stable open subset, then $(V, G_V, \phi|_V)$ is an orbifold chart compatible with (U, G, ϕ).
- Given two orbifold charts $(U, G, \phi), (V, H, \psi)$ and $x \in \phi(p) \cap \psi(q)$, one has that:

 (i) $p \in \Sigma_G$ iff $q \in \Sigma_H$.

 (ii) There are Faithful representations

 $G_p \to \text{GL}(n, \mathbb{R})$, $g \mapsto d_p \lambda_g$

 $H_q \to \text{GL}(n, \mathbb{R})$, $h \mapsto d_p \lambda_h$

 and images are conjugate subgroups.

Def. For an orbifold X:

(i) $x \in X$ is called a **singular point** if for some chart (U, G, ϕ)

$x \in \phi(p)$ with $p \in \Sigma_G$. The **singular locus** of X is denoted Σ_X.

(ii) The **isotropy type** of x is the conjugacy class in $\text{GL}(n, \mathbb{R})$ of the image $G_p \to \text{GL}(n, \mathbb{R})$ for some chart (U, G, ϕ), and is denoted $\text{ISO}_x(X)$.

Hence:

$$\Sigma_X = \{ x \in X : \text{ISO}_x(X) \neq 1 \}.$$

We will see that $\Sigma_X \subset X$ is a closed subset with empty interior.
Examples

1. Smooth manifolds = orbifolds w/ empty singular locus
 orbifolds w/ $\text{Is}_0(X) = 1$, $\forall x$

2. If $G \subset \text{Diff}(M)$ is a finite group then $X = M/G$ with
 quotient topology has a natural orbifold structure, with:
 $\Sigma_x = \{ x \in G : G_x \neq 1 \}$, $\text{Is}_0(X) \cong G_0$

 To construct orbifold chants on $\pi : M \to M/G$, given $p_0 \in M$
 there exists a chart (V, ψ) for M centered at p_0 such that:
 - V is G_{p_0} invariant;
 - $g \in G \cap V = \emptyset$ is $g \notin G_{p_0}$.

 We obtain $G_{p_0} \cong H \subset \text{Diff}(\psi(V))$, so we can define an
 orbifold chart $(\psi(V), G_{p_0}, \pi \circ \psi)$.

 An orbifold isomorphic to M/G for some finite group
 $G \subset \text{Diff}(M)$ is called a global quotient or a good orbifold.

Ex: $M = \mathbb{S}^2$ = \mathbb{C} : $121 = 1 \bar{3}$, $G = \mathbb{Z}_2 \mathbb{G}$, complex conjugation

Then: $X = \mathbb{S}^2/\mathbb{Z}_2 \cong \{-1, 1\}$

 $\Sigma_x = \{ -1, 1 \}$

 $\text{Is}_0(X) \cong \text{Is}_{-1, 1}(X) = \mathbb{Z}_2$

Ex: $M = \mathbb{S}^2$, $G = \mathbb{Z}_k$ act by rotations $\frac{2\pi}{k}$

Then: $X = \mathbb{S}^2/\mathbb{Z}_k \cong \mathbb{S}^2$

 $\Sigma_x = \{ \frac{2\pi}{k}, P \leq \}$

 $\text{Is}_0(X) \cong \text{Is}_{\frac{2\pi}{k}}(X) = \mathbb{Z}_k$
3. An orbifold which is not a global quotient:

Take $X = \mathbb{S}^2$ has a topological space. Consider two orbifold charts:

(a) $(D, 1, \phi)$: $\phi : D \cong \mathbb{S}^2 \setminus \{p_n\}$

(b) (D, Z_m, ψ): $Z_m = \frac{1}{m}$ relations by $\frac{2\pi}{m} f \in \mathbb{R}^2$

$\psi : D \to D/\mathbb{Z}_m \cong \mathbb{S}^2 \setminus \{p_n\}$

These charts are compatible: If we consider the orbifold chart $(D - 103, 1, \mathbb{I})$:

$\mathbb{I} : D - 103 \to \mathbb{S}^2 \setminus \{p_n, p_3\}$

We have maps:

$(D - 103, 1, \mathbb{I}) \xrightarrow{id} (D, 1, \phi)$

$(D - 103, 1, \mathbb{I}) \xrightarrow{(D, Z_m, \psi), \ z \to z^m}$

The first map is an embedding. The second map is not cover. So restricting to subsets $U_d \subset D - 103$ we obtain embedding of orbifold charts.

Gaining compatibility on the charts.

This orbifold has singular set $\Sigma_x = \{p_n\}$

and isotropy $\text{Iso}^+_p(X) = \mathbb{Z}_m$.

Similarly, one can construct a 2-dim orbifold $X = \mathbb{S}^2$ with two singular pts and isometries $\mathbb{Z}_m \neq \mathbb{Z}_m$. It is a global quotient iff $m = m$.

One can show that orbifold structures on \mathbb{S}^2 with 3 or more singular points are always good.