Last time: \(\mathcal{F}_a \subset \mathcal{P}(A) \) foliation determined by \(A \)-path homotopy

When is \(A \) integrable?

\[\iff \text{When is the leaf space } \mathcal{G}(A) = \mathcal{P}(A) / \mathcal{F}_a \text{ smooth?} \]

An obstruction to integrability:

Assume \(A \) integrable

\[\Rightarrow \mathcal{G}(A)_x \text{ is a Lie group w/ Lie algebra } \mathcal{Q}_x = \ker \mathcal{P}_x \]

\[\Rightarrow q_x: \mathcal{G}(Q_x) \rightarrow \mathcal{G}(A)_x \text{ is a covering map} \]

Lemma: \(\tilde{N}_x = \ker q_x \subset \mathcal{G}(Q_x) \) is a discrete subgroup of \(\pi_1(G/G_0) \)

Proof: \(q_x \) is covering \& homomorph \(\Rightarrow \tilde{N}_x \) is discrete and normal.

Every normal, discrete subgroup \(D \) of a connected Lie group \(G \)

is contained in \(\pi_1(G) \):

\[g \in G, \; d \in D. \text{ Choose path } g(t) \in G \; w/ \; g(0) = e, \; g(t) = g. \text{ Then:} \]

\[g(t) \cdot d \cdot g(t) \in D \text{ must be constant } \iff g \cdot d \cdot g^{-1} = g \cdot d \cdot g^{-1} = g \cdot d \in \pi_1(G). \]

\[\Rightarrow g \cdot d \cdot g^{-1} = g \cdot d \cdot g^{-1} = g \cdot d \Rightarrow d \in \pi_1(G). \]

Hence:

\[\mathcal{G}(A)_x = \mathcal{G}(Q_x) / \tilde{N}_x \; \& \; \pi_1(\mathcal{G}(A)_x) = \tilde{N}_x \]

\[+ \; S(\alpha) \rightarrow \mathcal{Q}_x \text{ principal } \mathcal{G}(A)_x \text{- bundle w/ } S(\alpha) \text{- connection, so:} \]

\[\vdots \rightarrow \pi_1(\mathcal{Q}_x) \xrightarrow{2_1} \pi_1(\mathcal{G}(A)_x) \rightarrow 1 \rightarrow \pi_1(\mathcal{Q}_x) \rightarrow \pi_0(\mathcal{G}(A)_x) \rightarrow 1 \]
It follows that we have short exact sequence:

\[\pi_2(G_\alpha) \xrightarrow{\vartheta_\alpha} G(Y_\alpha) \xrightarrow{q_\alpha} G(A)_\alpha \rightarrow \pi_1(G_\alpha) \rightarrow 1 \quad (*) \]

where \(\text{Im} \vartheta_\alpha = \widetilde{N}_\alpha \).

\((*) \) still exists in the non-integrable case!!

This leads to:

Main Obstruction to Integrability:

If \(A \) is integrable, \(\widetilde{N}_\alpha = \text{Im} \vartheta_\alpha \subset G(Y_\alpha) \) is discrete.

We will see that \(\widetilde{N}_\alpha \) can be computed in many cases. First we see how it can be defined for any Lie algebra

\[\text{Proposition} \quad \text{For any Lie algebra} \ A, \text{there is a short exact sequence of groups:} \]

\[\pi_2(G_\alpha) \xrightarrow{\vartheta_\alpha} G(Y_\alpha) \xrightarrow{q_\alpha} G(A)_\alpha \xrightarrow{P_\alpha} \pi_1(G_\alpha) \rightarrow 1 \]

where:

(i) \(P_\alpha \) maps \([a] \mapsto [\Delta a] \)

(ii) \(q_\alpha = G(i) \), \(i : G_\alpha \rightarrow A \)

(iii) \(\vartheta_\alpha \) maps \([6] \) to \([a] \) where \(a : I \rightarrow G_\alpha \) is \(A \)-path homotopy to \(G_\alpha \) via \(A \)-path homotopy covering \(6 \).

Remk. What we are doing is working out explicitly the first terms of long exact sequence of \(\tilde{S}^1(\alpha) \rightarrow G_\alpha, \ G(\alpha) \rightarrow G(A) \). Since \(\tilde{S}^1(\alpha) \) can be very pathological, we are not allowed to use the result that principal bundle is a Serre Fibration. We defer the proof for later.
Defn. The map $\Theta_x: \pi_x(0_x) \to G(G_x)$ is called the monodromy map of A and $\tilde{\mathcal{N}}_x(A) := \text{Im} \Theta_x$ is called the monodromy group at $x \in N$.

Note that $\tilde{\mathcal{N}}_x(A)$ is a normal subgroup of $G(G_x)$. But it may fail to be closed (obstruction!). Still:

Lemma $\tilde{\mathcal{N}}_x(A) \subset \mathcal{Z}(G(G_x))$

Proof.

Each $g \in \tilde{\mathcal{N}}_x(A)$ is represented by an A-path $a: I \to G_x$ which is A-path homotopic to 0_x. Working on orbit 0_x, we have $\text{Rep}(A_B)$ on isotropy G_B ("Bott connection")

\[\nabla_x p = [\alpha, p] \quad (\alpha \in \text{P}(A_B), p \in \mathcal{P}(A_B)) \]

This $\text{Rep}(A_B)$ restricts to $\text{Ad}: G_x \to G(G_x)$. Then Ad^{rep} gives Ad on $G(G_x)$. Hence, since $a \cdot 0_x$:

\[\begin{align*}
\cdot \quad & \tau_a = \text{Ad}_g: G_x \to G_x \\
\cdot \quad & \tau_a = \tau_{0_x} = \text{Id} \quad \Rightarrow \quad \text{Ad}_g = \text{Id} \iff g \in Z
\end{align*} \]

Note that $\mathcal{Z}(G(G_x))$ integrates $\mathcal{Z}(G_x)$ but may fail to be connected. Passing to connected component or identity:

\[\exp: (\mathcal{Z}(G_x), +) \rightarrow (\mathcal{Z}(G(G_x)), \circ) \]

This leads to a version of monodromy living in $G_x \subset A_x$, which is better for computations.
Proposition: Set:
\[N\alpha (A) = \exp(\tilde{\tilde{\alpha}}(A) \cup \tilde{\tilde{Z}}) \]

TFAG:
(i) \(\tilde{\tilde{\alpha}}(A) \subset G(G) \) is closed
(ii) \(\tilde{\tilde{\alpha}}(A) \subset G(G) \) is discrete
(iii) \(N\alpha (A) \subset G\alpha \) is closed
(iv) \(N\alpha (A) \subset G\alpha \) is discrete

Proof: For a 1-connected Lie group \(G \) with torsor \(G \)
\[\exp : G \rightarrow G \]
restricts to a group isomorphism
\[\exp : Z(G) \rightarrow Z(G) \]
Since \(\pi_2(\tilde{\tilde{G}}_n) \) is countable, \(\tilde{\tilde{\alpha}}(A) \) and \(N\alpha (A) \) are countable and the equivalences follow.

\[\square \]

Note that:
- \(\tilde{\tilde{\alpha}}(A) = \{ g \in G(A) : g \sim 0\} \)
- \(N\alpha (A) = \{ v \in G\alpha : v \sim 0\} \)

Exercise: Show that if \(x, y \) belong to some orbit \(O \) of \(A \)
Then \(N\alpha (A) \cong N\alpha (A) \) and \(\tilde{\tilde{\alpha}}(A) \cong \tilde{\tilde{\alpha}}(A) \) (canonically!)
Moreover, there is a bundle isomorphism \(T : \tilde{\tilde{G}}_0 \rightarrow \tilde{\tilde{G}}_0 \)
such that \(T : N\alpha (A) \rightarrow N\alpha (A) \).

Hint: Use the Bott \(A_0 \)-connection on \(\tilde{\tilde{G}}_0 \) as in proof above
Set: \[N(A) = \bigcup_{x} N_x(A) \subseteq \text{ker} p \subseteq A \]

Theorem (Crainic - F)

A Lie algebraoid \(A \) is integrable iff there exists an open \(U \subseteq A \) containing zero section \(O_{m,o} \) s.t.
\[N(A) \cap U = \{0\}_{m,o} \quad (\star) \]

Remarks

- Fixing \(x \in \mathbb{R} \), \(U_x = \cup_{r} B_{x,r} \) is open in \(G_x \), so (\(\star \)) gives \(N(A) \cap U_x = \{0\} \Rightarrow N_x(A) \subseteq B_x \) are discrete
- Condition (\(\star \)) says that \(N_x(A) \) are "uniformly" discrete
- IF \(x,y \) belong to same orbit: \(N_x(A) = N_y(A) \) and \(N_x \) is discrete iff \(N_y \) is discrete (Exercise above)
- IF \(A \) is transitive, \(N_x(A) \subseteq B_x \) discrete \(\Rightarrow (\star) \) (Again by Exercise above!)
- For general \(A \), we can think that condition (\(\star \)) has two components:

 (a) Along leaves: \(N_x(A) \subseteq B_x \) is discrete

 (b) Transverse to leaves: \(d(N_x(A) - \{0\}, O_x) \) stays bounded away from 0 when \(x \) varies in transverse direction.

Corollary: Any Lie algebraoid \(A \) with trivial monomorphism groups \(N_x(A) \) is integrable, for example, this happens if:

(i) \(A \) has trivial center, \(\forall x \in \mathbb{R} \);

(ii) Orbits \(O_x \) have finite \(\pi_x \), \(\forall x \in \mathbb{R} \);

(iii) For every orbit \(O_{cm} \), there is a splitting \(\sigma : T_{0} \rightarrow A_{0} \) of the anchor \(p : A_{0} \rightarrow T_{0} \) preserving Lie bimodules.
Still we would like to compute the monodromy groups.
We will see that next lecture.

Proof or Proposition:

We want to show exactness of sequence of group homomorphisms:

\[
\pi_2(G_x) \xrightarrow{\partial_x} G(G_x) \xrightarrow{q_x} G(A)_x \xrightarrow{\rho_x} \pi_1(G_x) \longrightarrow 1
\]

First one needs to check that maps \(\partial_x \) and \(q_x \) are well-defined:

- \(q_x : G(G_x) \to G(A)_x \): This is just \(G(i) \) where \(i : G_x \subset A \)

- \(\partial_x : \pi_2(G_x) \to G(G_x) \): Let \(\sigma : I \times I \to O_x \) with \(\sigma(\partial(\text{Id} \times \text{Id})) = x \)

Then \(\partial_x[\sigma] = [a] \) where \(a : I \to G_x \) is \(A \)-path homotopic to \(O_x \) via \(\overline{\sigma} : T(I \times I) \to A \) \(\text{covering } \sigma \).

Exercise: Show that \(\overline{\sigma} \) exists (Hint: See proofs last time and use splitting of monon).

Now similarly to covering homotopy theory, one shows:

(i) If \(a : I \to A \) has base path \(\overline{a} \), and \(\sigma : I \times I \to O_x \) is homotopy starting at \(\overline{a} \), \(\exists \) \(A \)-path homotopy \(\overline{\sigma} \) covering \(\sigma \) and starting at \(a \).

(ii) Two \(G_x \)-path \(a_0, a_1 : I \to G_x \) are \(G_x \)-homotopic iff \(\exists \) \(A \)-path homotopy whose base path \(\sigma : I \times I \to \Theta_x \) is the trivial class \([\text{Id}] \in \pi_2(G_x) \).

\[\text{Im} \, \partial_x = \ker q_x \] is obvious from definition. For \(\sigma \) let \(a : I \to G_x \) represent \([a] \in G(G_x) \) in \(\ker q_x \). This means \(\exists \overline{\sigma} \) \(A \)-path homotopy giving \(a \) \(O_x \). But since \(\gamma \) of this homotopy defines \([\gamma] \in \pi_1(G_x) \) \(\ker \theta_x = [a] \).
\[\text{In} \ g_n = \text{Ker} \ p_n: \ C \text{ is obvious from definitions. For } \gamma \text{ let } \]
\[[a] \in g(A), \text{ be in } \text{Ker} \ p_n, \text{ i.e., } \gamma_n \text{ is contractible in orbit } \Theta_n. \]
Choose path-homotopy \(\delta: I \times I \to \Theta_n \) such that \(\delta_n \equiv \delta. \) Can define A-path homotopy \(\delta: T(I \times I) \to A \) covering \(\delta \) with \(\delta_n(t, s) = \gamma_n(s). \)

Then \(\delta_n(t, s) \) is \(\delta_n \)-path which is A-path homotopic to \(\gamma_n \).
So:
\[q_n([\delta]) = [a], \delta = [a] \]

- \(p_n \) is surjective: Any loop \(\gamma: I \to \Theta_n, \delta(s) \equiv \gamma_0 \) is the base path of an A-path \(a: I \to A \) (e.g., use splitting \(\delta: T0 \to A_0 \) or Theorem).