(1) Note for this one: in the case where all subgroups involved are closed Lie subgroups, these proofs may be much easier using the closed subgroup theorem; however, as shown below, they hold in general as well!

(a) Let \(\text{Lie}(H_1) = \mathfrak{h}_1 \) and \(\text{Lie}(H_2) = \mathfrak{h}_2 \). It is easy to check that, since \(\mathfrak{h}_1 \) and \(\mathfrak{h}_2 \) are subalgebras of \(\text{Lie}(G) = \mathfrak{g} \), \(\mathfrak{h}_1 \cap \mathfrak{h}_2 \) is also a Lie subalgebra. Let \(K \) be the maximal leaf through the identity of the distribution generated by \(\mathfrak{h}_1 \) and \(\mathfrak{h}_2 \). On a small neighborhood \(V \) of \(0 \in \mathfrak{h}_1 \cap \mathfrak{h}_2 \), \(\exp : V \to \exp(V) := U \) is a diffeomorphism. However, by the naturality of \(\exp \), since \(\mathfrak{h}_1 \cap \mathfrak{h}_2 \) is a subset of \(\mathfrak{h}_1 \) and \(\mathfrak{h}_2 \), \(U \subset H_1 \cap H_2 \). Therefore, as \(U \) generates \(K \), \(K \subset H_1 \cap H_2 \).

Now, note that via the diffeomorphisms \(L_g \) for any \(g \in H_1 \cap H_2 \), we may extend both the topology and smooth structure of \(K \) to every set \(gK \) for \(g \in H_1 \cap H_2 \). In our hypothesized Lie subgroup structure, \(K \) will serve as the connected component of the identity while each \(gK \) will serve as a coset. It is clear this defines a smooth structure for \(H_1 \cap H_2 \) but it remains to be demonstrated that this induced topology (i.e., the topology of some number of disjoint copies of \(K \)) is second-countable.

Again, take \(V \) a small neighborhood of \(0 \in \mathfrak{h}_1 \cap \mathfrak{h}_2 \) for which \(\exp : V \to \exp(V) := U \) is a diffeomorphism. Without loss of generality, by shrinking \(V \) as necessary, we may assume that \(V = V_1 \cap V_2 \) for \(V_i \), a neighborhood of \(0 \) in \(\mathfrak{h}_i \) on which \(\exp \) is a local diffeomorphism. So because \(\exp \) is a diffeomorphism on \(V_i \), \(\exp(V_1) \cap \exp(V_2) \). It follows that, for any open subset \(W \) of \(K \) containing \(e \), there exist open \(W_1 \subset H_1 \), \(W_2 \subset H_2 \) such that \(W_1 \cap W_2 \) is open in \(K \) and \(e \in W_1 \cap W_2 \subset W \). Via left translations, this holds for every \(g \in H_1 \cap H_2 \). Thus for \(B \) any bases of \(H_1 \) and \(H_2 \), \(B := \{ B_1 \cap B_2 \cap K \mid B_i \in B_i \} \) is a basis for the topology of \(H_1 \cap H_2 \).

In particular, since \(H_1 \) and \(H_2 \) are second countable, we may choose \(B \) to be countable and therefore \(H_1 \cap H_2 \) admits a countable basis.

(b) This one is fairly simple once we know that the quotient of a Lie group by a closed Lie subgroup is again a Lie group. But as we haven’t proven this in class yet, we may instead proceed as follows: let \(\varphi : \mathfrak{g} \to \mathfrak{k} \) be the map of Lie algebras induced by \(\phi : G \to K \). As \(\varphi \) is a map of Lie algebras, it is easy to check that \(\mathfrak{h} := \varphi(\mathfrak{g}) \) is a Lie subalgebra of \(\mathfrak{k} \). Let \(H \) be the maximal leaf of the distribution generated by \(\mathfrak{h} \) through \(e \in K \). Near \(e \in H \), we have via the naturality of \(\exp \) that \(\exp(\varphi(v)) = \phi(\exp(v)) \). So \(H \) is in the image of \(\phi \) in a neighborhood of the identity and, as \(\phi \) is a homomorphism, this implies that \(H \subset \phi(G) \).

As in the previous problem, we may extend this to topology and a smooth structure for all of \(\phi(G) \) but must show then that, with respect to this induced topology, \(\phi(G) \) is second countable.

So, let \(V_G \subset \mathfrak{g} \) and \(V_H \subset \mathfrak{h} \) be two neighborhoods of \(0 \) for which \(\exp : V_G \to \exp(V_G) := U_G \) and \(\exp : V_H \to \exp(V_H) := U_H \) are diffeomorphisms. Without loss of generality, by shrinking \(V_G \) as necessary, we may assume that \(\varphi(V_G) = V_H \).
Then via the naturality of exp, \(\phi(U_G) = U_H \). It follows that \(\phi \) maps \(G_0 \) onto \(H \). Similarly, \(\phi \) maps each connected component \(gG^o \) onto the connected component \(\phi(g)H \) of \(\phi(G) \). Thus, \(\phi(G) \) has at most the same number of connected components as \(G \). As \(G \) is a Lie group, it has only countably many connected components. This is enough to conclude \(\phi(G) \) is second countable.

(c) Again, let \(\varphi : \mathfrak{g} \to \mathfrak{k} \) be the map of Lie algebras induced by \(\phi : G \to K \). Then for \(\text{Lie}(H) = \mathfrak{h} \), it is not hard to check that, since \(\varphi \) is a map of Lie algebras, \(\varphi^{-1}(\mathfrak{h}) \) is a Lie subalgebra of \(\mathfrak{g} \). Let \(A \) be the maximal leaf through the identity of the distribution generated by \(\varphi^{-1}(\mathfrak{h}) \). As above, using the naturality of exp, we may conclude that there is a neighborhood \(U \) of \(e \in A \) with \(U \subset \phi^{-1}(H) \) and therefore, since \(\phi \) is a homomorphism, \(A \subset \phi^{-1}(H) \). Indeed, \(A \subset \phi^{-1}(H^o) \) and \(\phi \) maps \(A \) onto \(H^o \). As before, we topologize and give \(\phi^{-1}(H) \) a smooth structure via diffeomorphisms applied to \(A \).

To check for second countability, we will show that there are countably many components in \(\phi^{-1}(hH^o) \) for each \(h \in H \). Since there are only countably many cosets \(hH^o \) of \(H \), this would imply that, in total, there are only countably many cosets of \(\phi^{-1}(H) \).

So, fix \(h \in H \) and \(h_1 \in \phi^{-1}(hH^o) \). Note that, since \(\ker(\varphi) \subset \varphi^{-1}(\mathfrak{h}) \), \(\ker(\phi)^o \subset A \). It follows that \(h_1 \ker(\phi)^o \subset h_1A \). Suppose \(h_2 \) is also in \(\phi^{-1}(hH_0) \). Then we must have \(h_2 = h_1k \) for some \(k \in \ker(\phi) \). So \(h_2A = (h_2h_1^{-1})h_1A = h_1kA \) must contain fully contain \(h_1(k \ker(\phi)^o) \), for some coset \(k \ker(\phi)^o \) of \(\ker(\phi) \). That is, each coset \(h_2A \) of \(\phi^{-1}(hH^o) \) fully contains a translate of a coset of \(\ker(\phi) \). Therefore, there at most as many cosets \(h'A \) in \(\phi^{-1}(hH^o) \) as there are cosets of \(\ker(\phi) \). As we already know that \(\ker(\phi) \) is a closed Lie group and therefore only has a countable number of cosets, the result follows.

(2) First, let’s show \(\text{exp} : \mathfrak{gl}(2, \mathbb{C}) \to GL(2, \mathbb{C}) \) is surjective. Fix \(A \in GL(2, \mathbb{C}) \) and let \(\lambda_1, \lambda_2 \in \mathbb{C}\setminus\{0\} \) be the eigenvalues of \(A \). First, assume \(\lambda_1 \neq \lambda_2 \). Then \(A \) is diagonalizable, so for \(D \) the matrix

\[
D = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

there exists a matrix \(P \in GL(2, \mathbb{C}) \) with \(A = PDP^{-1} \). Recall now that the matrix exponential map satisfies \(e^{PDP^{-1}} = Pe^{P}P^{-1} \). So to show that \(A \) is in the image of \(\text{exp} \), it is enough to show that \(D \) is in the image of \(\text{exp} \).

But, for any diagonal matrix \(D' \in \mathfrak{gl}(2, \mathbb{C}) \),

\[
\text{if } D' = \begin{bmatrix}
z_1 & 0 \\
0 & z_2
\end{bmatrix}, \text{ then } \exp(D') = \begin{bmatrix}
e^{z_1} & 0 \\
0 & e^{z_2}
\end{bmatrix}
\]

As \(\text{exp} : \mathbb{C} \to \mathbb{C} \) has image \(\mathbb{C}\setminus\{0\} \) and \(\lambda_1 \lambda_2 \neq 0 \), \(D \) must be in the image of \(\text{exp} : \mathfrak{gl}(2, \mathbb{C}) \to GL(2, \mathbb{C}) \) and so, as explained above, \(A \) is also in the image of \(\text{exp} \).

So suppose \(\lambda := \lambda_1 = \lambda_2 \). Then we may have that the Jordan normal form to \(A \) is of the form

\[
J = \begin{bmatrix}
\lambda & 1 \\
0 & \lambda
\end{bmatrix}
\]
For any \(\sigma, \tau \in \mathbb{C} \), the matrices \[
\begin{pmatrix}
\sigma & 0 \\
0 & \tau
\end{pmatrix}
\] and \[
\begin{pmatrix}
0 & \sigma \\
0 & 0
\end{pmatrix}
\] commute, (i.e., their Lie bracket is zero), therefore, we must have that

\[
\exp \left(\begin{pmatrix}
\sigma & 0 \\
0 & \tau
\end{pmatrix} + \begin{pmatrix}
0 & \sigma \\
0 & 0
\end{pmatrix} \right) = \exp \left(\begin{pmatrix}
\sigma & 0 \\
0 & \tau
\end{pmatrix} \right) \exp \left(\begin{pmatrix}
0 & \sigma \\
0 & 0
\end{pmatrix} \right) = \begin{pmatrix}
e^\tau & e^\sigma \\
e^\sigma & e^\tau
\end{pmatrix}
\]

So for \(\tau \) satisfying \(e^\tau = \lambda \), it follows that \(J = \exp \left(\begin{pmatrix}
\lambda^{-1} & 0 \\
0 & \lambda
\end{pmatrix} \right) \). As in the case where \(J \) was diagonal, it follows that \(A \) is in the image of \(\exp \).

Now, let’s look at the real case. Note that the natural inclusion \(GL(2, \mathbb{R}) \to GL(2, \mathbb{C}) \) makes \(GL(2, \mathbb{R}) \) into a (closed) Lie subgroup of \(GL(2, \mathbb{C}) \) (thinking about all objects involved as real Lie groups!). It follows by the naturality of \(\exp \) that \(\exp : \mathfrak{gl}(2, \mathbb{C}) \to GL(2, \mathbb{C}) \) takes \(\mathfrak{gl}(2, \mathbb{R}) \subset \mathfrak{gl}(2, \mathbb{C}) \) to \(GL(2, \mathbb{R}) \subset GL(2, \mathbb{C}) \).

It follows from above that \(\exp \) takes a matrix with eigenvalues \(\lambda_1, \lambda_2 \) to a matrix with eigenvalues \(e^{\lambda_1} \) and \(e^{\lambda_2} \). So \(\exp \) cannot map a matrix with real eigenvalues to a matrix with negative eigenvalues. Recall however that a matrix \(A \in \mathfrak{gl}(2, \mathbb{R}) \) may have complex eigenvalues \(\lambda_1 \) and \(\lambda_2 \), but they must satisfy \(\sum_1 = \lambda_2 \). So if \(B \in GL(2, \mathbb{R}) \) is the image of a matrix \(A \in \mathfrak{gl}(2, \mathbb{R}) \) with complex eigenvalues \(\lambda, \bar{\lambda} \), then \(B \) has eigenvalues \(e^\lambda, e^{-\lambda} \). Therefore, the eigenvalues of \(B \) satisfy \(|e^\lambda| = |e^{-\lambda}| \). So the matrix stated in the statement of the problem (or indeed any matrix in \(GL(2, \mathbb{R}) \) with two different negative eigenvalues) cannot be in the image of \(\exp \).

(3) Let \(\mathfrak{g} := Lie(G) \) and let \(V \) be an open neighborhood of \(0 \in \mathfrak{g} \) such that \(\exp \mid_V \) is a diffeomorphism onto its image. Without loss of generality, we may assume that \(V \) is bounded and \(V \) is star-shaped with respect to \(0 \) (i.e., \(V \) is closed under scalar multiplication by scalars \(\lambda \in [0,1] \)). Let \(V' = \{ v \in V \mid 2v \in V \} \) and let \(U := \exp(V') \).

Suppose \(H \subset U \) is a Lie subgroup. Fix \(h \in H \) and assume \(h \neq e \). Then by design, there exists non-zero \(X \in V' \) with \(\exp(X) = h \). Since \(V \) is bounded, there exists a largest integer for \(n \) such that \(2^n X \in V \). By definition, we must have \(2^n X \in V \setminus V' \). Since \(\exp \) is a bijection on \(V \), \(\exp(V \setminus V') \cap U = \emptyset \). But \(\exp(2^n X) = h^{2^n} \in H \). Thus, we must have \(H = \{ e \} \).

(4) Left invariant connections:

(a) Fix a basis \(\{ X_1, \ldots, X_n \} \in T_1 G \). Then, via left translations, this defines a basis to the tangent space at every point \(g \in G \). So the left invariant vector fields \(\{ X_1, \ldots, X_n \} \in \mathfrak{g} \) define a \(C^\infty(G) \)-basis for \(\mathcal{X}(G) \). That is, for every \(Y \in \mathcal{X}(G) \), there are unique functions \(f_1, \ldots, f_n \in C^\infty(G) \) for which \(Y = \sum f_i X_i \).

Now, let \(Y = \sum f_i X_i \) and \(Z = \sum g_i X_i \). Then, purely via the required properties of a linear connection, recall we have that any connection \(\nabla \) must satisfy

\[
\nabla_Y Z = \sum_i f_i \nabla_{X_i} Z = \sum_i f_i \left(\sum_j (g_j \nabla_{X_i} X_j + X_i(g_j) X_j) \right)
\]

So to define \(\nabla \), it is enough to determine \(\nabla_{X_i} X_j \in \mathcal{X}(G) \) for every \(i \) and \(j \) and, in turn, these choices determine \(\nabla \) uniquely.

So, in the case where \(\nabla \) is left-invariant, it is clear that \(\nabla_{X_i} X_j \in \mathfrak{g} \) (i.e., \(\nabla_{X_i} X_j \) is left-invariant). As \(\nabla \) is linear in both input slots, the definition \(\nabla_{X_i} X_j \in \mathfrak{g} \)
for each pair of basis elements X_i and X_j of \mathfrak{g} extends to a unique bilinear map $B_\nabla : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$.

On the other hand, given a bilinear map $B : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ B defines a left-invariant connection ∇^B via $\nabla^B_{X_j}X_i := B(X_i, X_j)$ (as explained above). It is clear that for any bilinear B and left-invariant connection ∇, $B_\nabla = B$ and $\nabla^B_\nabla = \nabla$.

For below: note that for any $X \in \mathfrak{g}$, $X = \sum c_i X_i$ for constants c_i; thus, for $X, Y \in \mathfrak{g}$, $\nabla_X Y = B_\nabla(X, Y)$.

(b) Recall that a geodesic for a connection ∇ is a path $\gamma(t)$ satisfying $\nabla_\gamma(t)\dot{\gamma}(t) = 0$.

So for ∇ corresponding to bilinear $B : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, $\gamma(t) := \exp(tX)$ is a geodesic if and only if $\nabla_X X = B(X, X) = 0$.

(c) If ∇ is left invariant, right invariant, and inversion invariant, we can show that, for $\gamma : [0, 1] \to G$ with $\gamma(t) := \exp(tX)$, parallel transport along $\gamma(t)$ is given by $d_e(\exp(tX/2) \circ \exp(tX/2))$. Assuming this is true, we have that, for $X, Y \in \mathfrak{g}$,

$$\nabla_X Y = \frac{d}{dt} \bigg|_0 d_e(\exp(tX/2) \circ \exp(tX/2))(Y) = \frac{d}{dt} \bigg|_0 d_{\exp(tX/2)}R_{\exp(tX/2)}(\exp(tX/2))(Y) = [X/2, Y] = \frac{1}{2}[X, Y]$$

(this is the formula that allows us to recover a connection from its parallel transport).

So, let’s show that parallel transport along $\gamma(t)$ is given by $d_e(\exp(tX/2) \circ \exp(tX/2))$. As ∇ is left invariant, right invariant, and inversion invariant, then the map $\Phi(g) := (\exp(tX/2) \circ \exp(tX/2))(g^{-1})$ is an affine transformation (i.e., it preserves ∇). Now, note that $d_{\exp(tX/2)}\Phi = -\text{id}$ (this is not so hard to check as any curve through $\exp(X/2)$ is tangent to a curve of the form $\exp(X/2) \cdot \exp(tY)$).

So, for $v \in T_eG$, let $v(t)$ denote the parallel transport of v along $\gamma(t)$. Note that $\Phi(\gamma(t)) = \exp((1 - t)X) = \gamma(1 - t)$. Then since Φ is affine, we have that $d_{\exp(tX)}\Phi(v(t))$ is the parallel transport of $d_e\Phi(v)$ along $\Phi \circ \gamma = \gamma(1 - t)$. For $t = 1/2$, we have that $d_{\exp(tX)}\Phi(v(1/2)) = -v(1/2)$. Via the properties of parallel transport, we must have that $d_{\exp(tX)}\Phi(v(t)) = -v(1 - t)$. So $v(1) = -v(0) = -d_e\Phi(v) = d_e(\exp(tX/2) \circ \exp(tX/2))$.

It is easy to check that the connection generated by $B(X, Y) := \frac{1}{2}[X, Y]$ is also right-invariant and inversion invariant.

(d) As above, since $\{X_i\}$ yield a $C^\infty(G)$-basis of $\mathcal{X}(G)$ (for $\{X_i\}$ a basis of \mathfrak{g}), it is enough to compute $T \nabla$ and ∇R for left-invariant vector fields.

$$T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] = \frac{1}{2}([X, Y] - [Y, X]) - [X, Y] = 0$$

To compute ∇R, let’s first compute R:

$$R(X, Y)(Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z = \frac{1}{4}[X, [Y, Z]] - \frac{1}{4}[Y, [X, Z]] - \frac{1}{2}[[X, Y], Z]$$

$$= \frac{1}{4}[X, [Y, Z]] + \frac{1}{4}[Y, [Z, X]] + \frac{1}{2}[Z, [X, Y]]$$

$$= \frac{1}{4}[Z, [X, Y]]$$

4
Then:
\[\nabla^R(W, X, Y, Z) = \nabla_W(\nabla^R(X, Y, Z)) - \nabla_W(\nabla^R(X, Y)) - \nabla_W(\nabla^R(X)) - \nabla_W(\nabla^R(Y)) + \nabla_W(\nabla^R(Z)) \\
= \frac{1}{8}([W, [Z, [X, Y]]] - [Z, [W, X]] - [Z, [W, Y]] - [W, Z, [X, Y]]) \\
= \frac{1}{8}([W, [Z, [X, Y]]] - [W, Z, [X, Y]] + [Z, [W, Y]]) \\
= \frac{1}{8}([W, [Z, [X, Y]]] - [Z, [W, Y]] - [W, Z, [X, Y]]) \\
= \frac{1}{8}([W, [Z, [X, Y]]] + [Z, [X, Y]] - [W, Z]) - [X, Y]) \\
= \frac{1}{8}([X, Y], [W, Z]) - [W, Z, [X, Y]]) = 0 \\
\]

(5) Left invariant metrics:

(a) First, recall that, for any Riemannian metric \(\eta \) on \(G \), \(\eta_g \) is an inner product on \(T_e G \) for every \(g \in G \). In particular, it defines an inner product \((\cdot, \cdot) = \eta_e \) on \(T_e G \).

On the other hand, given an inner product \((\cdot, \cdot) \) on \(\mathfrak{g} \), we may define a left-invariant Riemannian metric \(\eta_g(v, w) := (dL_{g^{-1}}(v), dL_{g^{-1}}(w)) \). It is clear this establishes a bijection between left-invariant Riemannian metrics and inner products on \(\mathfrak{g} \).

(b) If \(\eta \) is bi-invariant, then \((dL_g(dR_{g^{-1}}(v)), dL_g(dR_{g^{-1}}(w))) = (Ad_g(v), Ad_g(w)) \) for all \(g \in G \). Therefore, for every \(X \in \mathfrak{g} \),

\[
0 = \left. \frac{d}{dt} \right|_{t=0} (Ad_{d\exp(tX)}(Y), Ad_{d\exp(tX)}(Z)) = (d(X)Y, Z) + (Y, d(X)Z) \tag{1}
\]

On the other hand, if the above holds, then \((\cdot, \cdot) \) must be right invariant in a small neighborhood of the identity (i.e., on which \(\exp \) diffeomorphically maps to). To see this, note:

\[
0 = (d(X)Y, Z) + (Y, d(X)Z) = \left. \frac{d}{dt} \right|_{t=0} (dR_{d\exp(tX)}Y, dR_{d\exp(tX)}Z) \\
= \left. \frac{d}{dt} \right|_{t=0} (dR_{d\exp(tX)}Y_{d\exp(sX)}, dR_{d\exp(tX)}Z_{d\exp(sX)}) \\
= \left. \frac{d}{dt} \right|_{s} (dR_{d\exp(tX)}Y, dR_{d\exp(tX)}Z)
\]

i.e., \((dR_{d\exp(tX)}Y, dR_{d\exp(tX)}Z) \) is constant for all \(t \).

As \(G \) is connected and \(\eta \) is right-invariant in a neighborhood of \(e \), it must be right-invariant everywhere.

(c) Again, as a basis of left-invariant vector fields forms a \(C^\infty(G) \)-basis of \(\mathcal{X} \), we may assume we are working everywhere with left-invariant vector fields only. Note then that \(\nabla \) induced by \(\frac{1}{2}[X, Y] \) is a metric connection; for any \(X, Y, Z \in \mathfrak{g} \):

\[
0 = \nabla_X \eta(Y, Z) = \eta(\nabla_X Y, Z) + \eta(X, \nabla_X Z)
\]
where the left equality holds because η left-invariant implies $\eta(Y, Z)$ is a constant and the right equality holds because it translates exactly to (1), up to a factor of $1/2$ (note we only needed connectedness for the other direction of b). So ∇ induced by $\frac{1}{2}[X, Y]$ is metric and torsion invariant (i.e., it is the Lev-Civita connection of η). It follows that geodesics of η are geodesics of ∇ and, by part b of the previous problem, it follows that $\exp(tX)$ is a geodesic for any $X \in \mathfrak{g}$.