An invitation to Poisson geometry and its applications

Rui Loja Fernandes

Department of Mathematics
University of Illinois at Urbana-Champaign, USA

December 2019
Contents:

- Poisson brackets and Hamiltonian dynamics
- Poisson manifolds
- Local Poisson geometry
- Global Poisson geometry
- Deformation quantization
Definition
A Poisson bracket on a manifold M is a Lie bracket

$$\{\cdot, \cdot\} : C^\infty(M) \times C^\infty(M) \to C^\infty(M)$$

satisfying the **Leibniz identity**:

$$\{f, gh\} = \{f, g\}h + g\{f, h\}.$$

The pair $(M, \{\cdot, \cdot\})$ is called a Poisson manifold.
Definition

A **Poisson bracket** on a manifold M is a **Lie bracket**

$$\{ \cdot, \cdot \} : C^\infty(M) \times C^\infty(M) \to C^\infty(M)$$

satisfying the **Leibniz identity**:

$$\{ f, gh \} = \{ f, g \} h + g \{ f, h \}.$$

The pair $(M, \{ \cdot, \cdot \})$ is called a **Poisson manifold**.

Definition

A **Poisson map** $\phi : (M_1, \{ \cdot, \cdot \}_1) \to (M_2, \{ \cdot, \cdot \}_2)$ is a smooth map such that pullback is a Lie algebra morphism:

$$\{ f \circ \phi, g \circ \phi \}_2 = \{ f, g \}_1 \circ \phi, \quad \forall f, g \in C^\infty(M_2).$$
Hamiltonian Dynamics

On a Poisson manifold \((M, \{\cdot, \cdot\})\) a function \(h \in C^\infty(M)\) determines a **hamiltonian vector field** \(X_h\) by:

\[
X_h(f) := \{h, f\}, \quad \forall f \in C^\infty(M).
\]
Hamiltonian Dynamics

On a Poisson manifold \((M, \{\cdot, \cdot\})\) a function \(h \in C^\infty(M)\) determines a Hamiltonian vector field \(X_h\) by:

\[
X_h(f) := \{h, f\}, \quad \forall f \in C^\infty(M).
\]

Basic Properties

▶ \(l\) is a first integral of \(X_h\) if and only if \(\{h, l\} = 0\);

▶ \(h\) is always a first integral of \(X_h\);

▶ If \(l_1\) and \(l_2\) are first integrals of \(X_h\), then \(\{l_1, l_2\}\) is also a first integral of \(X_h\).
Classical Mechanics (Newton’s Equations)

Motion of a particle \(q(t) \in \mathbb{R}^n \) in a potential \(V : \mathbb{R}^n \rightarrow \mathbb{R} \):

\[
m_i \ddot{q}_i(t) = - \frac{\partial V}{\partial q_i} \quad \Leftrightarrow \quad \begin{cases}
\dot{q}_i = \frac{p_i}{m_i} \\
\dot{p}_i = - \frac{\partial V}{\partial q_i}
\end{cases}
\]
Classical Mechanics (Newton’s Equations)

Motion of a particle \(q(t) \in \mathbb{R}^n \) in a potential \(V : \mathbb{R}^n \rightarrow \mathbb{R} \):

\[
m_i \ddot{q}_i(t) = - \frac{\partial V}{\partial q_i} \quad \Leftrightarrow \quad \begin{cases}
\dot{q}_i = \frac{p_i}{m_i} \\
\dot{p}_i = - \frac{\partial V}{\partial q_i}
\end{cases}
\]

\(M = \mathbb{R}^{2n} \) with coordinates \((x_1, \ldots, x_{2n}) = (q_1, \ldots, q_n, p_1, \ldots, p_n)\):

\[
\begin{align*}
\{f_1, f_2\} &= \sum_{i=1}^{n} \left(\frac{\partial f_1}{\partial p_i} \frac{\partial f_2}{\partial q_i} - \frac{\partial f_1}{\partial q_i} \frac{\partial f_2}{\partial p_i} \right) \\
h &= \sum_{i=1}^{n} \frac{p_i^2}{2m_i} + V(q)
\end{align*}
\]
Classical Mechanics (Newton’s Equations)

Motion of a particle $q(t) \in \mathbb{R}^n$ in a potential $V : \mathbb{R}^n \to \mathbb{R}$:

$$m_i \ddot{q}_i(t) = -\frac{\partial V}{\partial q_i} \Leftrightarrow \begin{cases} \dot{q}_i = \frac{p_i}{m_i} \\ \dot{p}_i = -\frac{\partial V}{\partial q_i} \end{cases}$$

$M = \mathbb{R}^{2n}$ with coordinates $(x_1, \ldots, x_{2n}) = (q_1, \ldots, q_n, p_1, \ldots, p_n)$:

$$\{f_1, f_2\} = \sum_{i=1}^{n} \left(\frac{\partial f_1}{\partial p_i} \frac{\partial f_2}{\partial q_i} - \frac{\partial f_1}{\partial q_i} \frac{\partial f_2}{\partial p_i} \right).$$

$$h = \sum_{i=1}^{n} \frac{p_i^2}{2m_i} + V(q)$$

Then Newton’s equations are equivalent to:

$$\dot{x}_a = \{h, x_a\}, \quad (a = 1, \ldots, n)$$
Elasticity (Euler’s Equation)

- Motion of a top in absence of gravity, moving around its center of mass, with moments of inertia l_1, l_2 and l_3:

\[
\begin{align*}
\dot{x}_1 &= \frac{l_2-l_3}{l_2 l_3} x_2 x_3 \\
\dot{x}_2 &= \frac{l_3-l_1}{l_3 l_1} x_3 x_1, \\
\dot{x}_3 &= \frac{l_1-l_2}{l_1 l_2} x_1 x_2.
\end{align*}
\]
Elasticity (Euler’s Equation)

- Motion of a top in absence of gravity, moving around its center of mass, with moments of inertia l_1, l_2 and l_3:

$$
\begin{align*}
\dot{x}_1 &= \frac{l_2 - l_3}{l_2 l_3} x_2 x_3 \\
\dot{x}_2 &= \frac{l_3 - l_1}{l_3 l_1} x_3 x_1, \\
\dot{x}_3 &= \frac{l_1 - l_2}{l_1 l_2} x_1 x_2.
\end{align*}
$$

$M = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3):

$$\{f, g\}(x) = (\nabla f(x) \times \nabla g(x)) \cdot x.$$

$$h(x) = \sum_{i=1}^{3} \frac{x_i^2}{2l_i}.$$
Elasticity (Euler’s Equation)

Motion of a top in absence of gravity, moving around its center of mass, with moments of inertia I_1, I_2 and I_3:

\[
\begin{align*}
\dot{x}_1 &= \frac{l_2-l_3}{l_2l_3} x_2 x_3 \\
\dot{x}_2 &= \frac{l_3-l_1}{l_3l_1} x_3 x_1, \\
\dot{x}_3 &= \frac{l_1-l_2}{l_1l_2} x_1 x_2.
\end{align*}
\]

$M = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3):

\[
\{f, g\}(x) = (\nabla f(x) \times \nabla g(x)) \cdot x.
\]

\[
h(x) = \sum_{i=1}^{3} \frac{x_i^2}{2l_i}
\]

Then Euler’s equations are equivalent to:

\[
\dot{x}_a = \{h, x_a\}, \quad (a = 1, 2, 3)
\]
Population Dynamics (Lotka-Volterra equations)

- The dynamics of n biological species (x_1, \ldots, x_n) interacting in a closed ecosystem:

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^{n} a_{ij} x_i x_j,$$

where (a_{ij}) is skew-symmetric and there is a solution $q = (q_1, \ldots, q_n)$.
Population Dynamics (Lotka-Volterra equations)

- The dynamics of n biological species (x_1, \ldots, x_n) interacting in a closed ecosystem:

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^{n} a_{ij} x_i x_j,$$

Assume (a_{ij}) is skew-symmetric and there is a solution $q = (q_1, \ldots, q_n)$

$$\varepsilon_i := \sum_{j=1}^{n} a_{ji} q_j.$$
Population Dynamics (Lotka-Volterra equations)

The dynamics of n biological species (x_1, \ldots, x_n) interacting in a closed ecosystem:

\[
\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^{n} a_{ij} x_i x_j,
\]

Assume (a_{ij}) is skew-symmetric and there is a solution $q = (q_1, \ldots, q_n)$

\[
\varepsilon_i := \sum_{j=1}^{n} a_{ji} q_j.
\]

$M = \mathbb{R}_+^n$ with coordinates (x_1, \ldots, x_n):

\[
\{f_1, f_2\}(x) = \sum_{1 \leq i < j \leq n} a_{ij} x_i x_j \frac{\partial f_1}{\partial x_i} \frac{\partial f_2}{\partial x_j}
\]

\[
h(x) = \sum_{i=1}^{n} (q_i \log x_i - x_i)
\]
Population Dynamics (Lotka-Volterra equations)

The dynamics of \(n \) biological species \((x_1, \ldots, x_n) \) interacting in a closed ecosystem:

\[
\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^{n} a_{ij} x_i x_j,
\]

Assume \((a_{ij}) \) is skew-symmetric and there is a solution \(q = (q_1, \ldots, q_n) \)

\[
\varepsilon_i := \sum_{j=1}^{n} a_{ji} q_j.
\]

\(M = \mathbb{R}_+^n \) with coordinates \((x_1, \ldots, x_n) \):

\[
\{f_1, f_2\}(x) = \sum_{1 \leq i < j \leq n} a_{ij} x_i x_j \frac{\partial f_1}{\partial x_i} \frac{\partial f_2}{\partial x_j}
\]

\[
h(x) = \sum_{i=1}^{n} (q_i \log x_i - x_i)
\]

Then the Lotka-Volterra equations are equivalent to:

\[
\dot{x}_i = \{h, x_i\}, \quad (i = 1, \ldots, n)
\]
Problems in Hamiltonian Dynamics

- How does the Poisson geometry constrain the dynamics?
- Is the system stable under perturbation?
- What are symmetries of a system? Reduction using symmetries?
- What is a (completely) integrable system?
- How to build numerical integrators that take into account the Poisson geometry?
Problems in Hamiltonian Dynamics

- How does the Poisson geometry constrain the dynamics?
- Is the system stable under perturbation?
- What are symmetries of a system? Reduction using symmetries?
- What is a (completely) integrable system?
- How to build numerical integrators that take into account the Poisson geometry?

Many open questions beyond the *symplectic case*.
Poisson tensors

1:1 correspondence:

\[
\left\{ \text{Poisson brackets } \{ \cdot, \cdot \} \right\} \leftrightarrow \left\{ \text{bivector fields } \pi \in \Gamma(\wedge^2 TM) \text{ satisfying } [\pi, \pi] = 0 \right\}
\]

\[
\pi(df, dg) = \{f, g\}
\]
Poisson tensors

1:1 correspondence:

\[
\begin{align*}
&\begin{cases}
\text{Poisson brackets } \{\cdot, \cdot\} \\
on a manifold \ M
\end{cases} \\
&\leftarrow \leftarrow \\
&\begin{cases}
\text{bivector fields } \pi \in \Gamma(\wedge^2 T\!M) \\
satisfying \ [\pi, \pi] = 0
\end{cases}
\end{align*}
\]

\[
\pi(df, dg) = \{f, g\}
\]

In a local chart \((U, x^i)\):

\[
\pi|_U = \sum_{i<j} \pi^{ij}(x) \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \quad \text{where } \pi^{ij} = \{x^i, x^j\}.
\]
Poisson tensors

1:1 correspondence:

\[
\begin{align*}
\{ \text{Poisson brackets} \{ \cdot, \cdot \} \} & \leftrightarrow \{ \text{bivector fields} \pi \in \Gamma(\wedge^2 TM) \text{ satisfying } [\pi, \pi] = 0 \} \\
\pi(df, dg) & = \{f, g\}
\end{align*}
\]

In a local chart \((U, x^i)\):

\[
\pi\big|_U = \sum_{i<j} \pi^{ij}(x) \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \quad \text{where } \pi^{ij} = \{x^i, x^j\}.
\]

\[
\pi^\# : T^* M \to TM, \alpha \mapsto \pi(\alpha, \cdot),
\]
Poisson tensors

1:1 correspondence:

\[\{ \text{Poisson brackets } \{ \cdot, \cdot \} \} \leftrightarrow \{ \text{bivector fields } \pi \in \Gamma(\wedge^2 T\!M) \} \]

\[\pi(df, dg) = \{f, g\} \]

In a local chart \((U, x^i)\):

\[\pi|_U = \sum_{i<j} \pi^{ij}(x) \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \text{ where } \pi^{ij} = \{x^i, x^j\}. \]

\[\pi^\#: T^*\!M \rightarrow T\!M, \alpha \mapsto \pi(\alpha, \cdot), \]

In this language:

- **Hamiltonian vector field:** \(X_h = \pi^\#(df)\) ("gradient of \(h\)"
- **rank at \(x \in M\):** \(\text{rank}_x \pi = \dim(\text{Im}(\pi^\#))\) (even integer).
Some examples of Poisson manifolds

- **symplectic manifolds**: (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 $$\{f, g\} := X_f(g), \quad \text{with } i_{X_f} \omega = df$$
Some examples of Poisson manifolds

- **symplectic manifolds:** (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 \[
 \{f, g\} := X_f(g), \quad \text{with } i_{X_f}\omega = df \quad \Leftrightarrow \quad \pi = \omega^{-1}
 \]
Some examples of Poisson manifolds

- **symplectic manifolds:** (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 $$\{f, g\} := X_f(g), \quad \text{with} \quad i_{X_f} \omega = df \quad \iff \quad \pi = \omega^{-1}$$

Conversely, any Poisson structure π with $\text{rank}_x \pi = \dim M$, everywhere, defines a symplectic structure.
Some examples of Poisson manifolds

- **symplectic manifolds**: (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 \[\{f, g\} := X_f(g), \quad \text{with } i_{X_f}\omega = df \quad \iff \quad \pi = \omega^{-1} \]

 Conversely, any Poisson structure π with $\text{rank}_x \pi = \dim M$, everywhere, defines a symplectic structure.

- **Duals of Lie algebras**: $M = g^*$ with Poisson bracket:

 \[\{f, g\}(\xi); = \langle [d_\xi f, d_\xi g], \xi \rangle \]
Some examples of Poisson manifolds

- **symplectic manifolds:** \((M, \omega)\) where \(\omega \in \Omega^2(M)\) is closed and non-degenerate:
 \[
 \{f, g\} := X_f(g), \quad \text{with } i_{X_f} \omega = df \iff \pi = \omega^{-1}
 \]

 Conversely, any Poisson structure \(\pi\) with \(\text{rank}_x \pi = \dim M\), everywhere, defines a symplectic structure.

- **Duals of Lie algebras:** \(M = g^*\) with Poisson bracket:
 \[
 \{f, g\}(\xi) = \langle [d_\xi f, d_\xi g], \xi \rangle \iff \pi = \sum_{i<j,k} c^i_{jk} x^k \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}
 \]

 Conversely, a Poisson structure on a vector space \(V\) such that the bracket of linear functions is linear, takes this form: \(V = g^*\).
Some examples of Poisson manifolds

- **symplectic manifolds:** (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 \[\{ f, g \} := X_f(g), \quad \text{with } i_{X_f} \omega = df \iff \pi = \omega^{-1} \]

 Conversely, any Poisson structure π with $\text{rank}_x \pi = \dim M$, everywhere, defines a symplectic structure.

- **Duals of Lie algebras:** $M = g^*$ with Poisson bracket:

 \[\{ f, g \}(\xi); = \langle [d_\xi f, d_\xi g], \xi \rangle \iff \pi = \sum_{i<j,k} c^{ij}_k x^k \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j} \]

 Conversely, a Poisson structure on a vector space V such that the bracket of linear functions is linear, takes this form: $V = g^*$.

- **Oriented 3-manifolds:** (M^3, μ) where $\mu \in \Omega^3(M)$ is a volume form. Every $F \in C^\infty(M)$ determines a Poisson structure:

 \[\{ f, g \}_F := \mu^{-1}(df, dg, dF) \]
Some examples of Poisson manifolds

- **symplectic manifolds:** \((M, \omega)\) where \(\omega \in \Omega^2(M)\) is closed and non-degenerate:

\[
\{f, g\} := X_f(g), \quad \text{with } i_{X_f} \omega = df \iff \pi = \omega^{-1}
\]

Conversely, any Poisson structure \(\pi\) with \(\text{rank}_x \pi = \dim M\), everywhere, defines a symplectic structure.

- **Duals of Lie algebras:** \(M = g^*\) with Poisson bracket:

\[
\{f, g\}(\xi) := \langle [d_\xi f, d_\xi g], \xi \rangle \iff \pi = \sum_{i<j,k} c_{ij}^k x^k \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}
\]

Conversely, a Poisson structure on a vector space \(V\) such that the bracket of linear functions is linear, takes this form: \(V = g^*\).

- **Oriented 3-manifolds:** \((M^3, \mu)\) where \(\mu \in \Omega^3(M)\) is a volume form. Every \(F \in C^\infty(M)\) determines a Poisson structure:

\[
\{f, g\}_F := \mu^{-1}(df, dg, dF) \iff \pi = i_{dF} \mu^{-1}
\]
Some examples of Poisson manifolds

- **b-symplectic structures:** A symplectic form with a log-type singularity along a divisor $Z \subset M$, determines a *smooth* Poisson structure. In local coordinates:

$$\omega = \frac{1}{x} dx \wedge dy + \sum_{i=1}^{n-1} dq_i \wedge dp_i \iff \pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \sum_{i=1}^{n-1} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$$

- **Poisson-Lie groups:** A Lie group G with a Poisson structure π such that the multiplication is a Poisson map:

$$m: (G \times G, \pi \oplus \pi) \to (G, \pi), (g, h) \mapsto gh.$$

These are semi-classical limits of quantum groups (examples can be obtained from solutions of CYBE).

- **Moduli spaces of flat connections:** The moduli space M of principal G-bundles with a flat connection over a surface Σ with boundary:

$$M = \text{Hom}(\pi_1(\Sigma), G) / G,$$ has a natural Poisson structure (symplectic if $\partial \Sigma = \emptyset$).
Some examples of Poisson manifolds

- **b-symplectic structures:** A symplectic form with a log-type singularity along a divisor $Z \subset M$, determines a *smooth* Poisson structure. In local coordinates:

$$\omega = \frac{1}{x} dx \wedge dy + \sum_{i=1}^{n-1} dq_i \wedge dp_i \quad \leftrightarrow \quad \pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \sum_{i=1}^{n-1} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$$

- **Poisson-Lie groups:** A Lie group G with a Poisson structure π such that the multiplication is a Poisson map:

$$m : (G \times G, \pi \oplus \pi) \to (G, \pi), \quad (g, h) \mapsto gh.$$

These are semi-classical limits of quantum groups (examples can be obtained from solutions of CYBE).
Some examples of Poisson manifolds

- **b-symplectic structures**: A symplectic form with a log-type singularity along a divisor $Z \subset M$, determines a smooth Poisson structure. In local coordinates:

$$\omega = \frac{1}{x} dx \wedge dy + \sum_{i=1}^{n-1} dq_i \wedge dp_i \quad \leftrightarrow \quad \pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \sum_{i=1}^{n-1} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$$

- **Poisson-Lie groups**: A Lie group G with a Poisson structure π such that the multiplication is a Poisson map:

$$m : (G \times G, \pi \oplus \pi) \rightarrow (G, \pi), \quad (g, h) \mapsto gh.$$

These are semi-classical limits of quantum groups (examples can be obtained from solutions of CYBE).

- **Moduli spaces of flat connections**: The moduli space \mathcal{M} of principal G-bundles with a flat connection over a surface Σ with boundary:

$$\mathcal{M} = \text{Hom}(\pi_1(\Sigma), G)/G,$$

has a natural Poisson structure (symplectic if $\partial \Sigma = \emptyset$).
Symplectic Foliation

For any two hamiltonian functions h_1 and h_2:

$$[X_{h_1}, X_{h_2}] = X_{\{h_1, h_2\}}$$

Define an **equivalence relation** on M by declaring two points equivalent if they can be joined by trajectories of hamiltonian vector fields.
Symplectic Foliation

For any two hamiltonian functions h_1 and h_2:

$$[X_{h_1}, X_{h_2}] = X_{\{h_1, h_2\}}$$

Define an **equivalence relation** on M by declaring two points equivalent if they can be joined by trajectories of hamiltonian vector fields.

Theorem (Weinstein, 1983)

The equivalence classes form a *singular foliation* of $(M, \{\cdot, \cdot\})$ by *symplectic submanifolds*.
Examples of symplectic foliations

- **symplectic manifolds**: symplectic leaves of \((M, \omega) = \text{connected components of } M\)
Examples of symplectic foliations

- **symplectic manifolds**: symplectic leaves of \((M, \omega)\) = connected components of \(M\)

- **Duals of Lie algebras**: symplectic leaves of \(g^*\) = coadjoint orbits:
Examples of symplectic foliations

- **symplectic manifolds**: symplectic leaves of \((M, \omega) = \) connected components of \(M\)
- **Duals of Lie algebras**: symplectic leaves of \(\mathfrak{g}^* = \) coadjoint orbits:
 \[
 \mathfrak{su}^*(2)
 \]
Examples of symplectic foliations

- **symplectic manifolds:** symplectic leaves of \((M, \omega) = \text{connected components of } M\)

- **Duals of Lie algebras:** symplectic leaves of \(\mathfrak{g}^* = \text{coadjoint orbits:}\)

\[
\begin{align*}
\mathfrak{su}^*(2) & \quad \mathfrak{sl}^*(2, \mathbb{R})
\end{align*}
\]
Examples of symplectic foliations

▶ **symplectic manifolds:** symplectic leaves of \((M, \omega)\) = connected components of \(M\)

▶ **Duals of Lie algebras:** symplectic leaves of \(g^* = \text{coadjoint orbits}:

\[\text{su}^*(2)\] \[\text{sl}^*(2, \mathbb{R})\] \[b\]
Examples of symplectic foliations

- **symplectic manifolds:** symplectic leaves of \((M, \omega) = \text{connected components of } M\)

- **Duals of Lie algebras:** symplectic leaves of \(g^* = \text{coadjoint orbits:} \)

 - \(\mathfrak{su}^*(2)\)
 - \(\mathfrak{sl}^*(2, \mathbb{R})\)
 - \(b\)

- **Oriented 3-manifolds:** leaves of \((M^3, \mu, F)\) are contained in the level sets of \(F : M^3 \to \mathbb{R}\).
Examples of symplectic foliations

- **symplectic manifolds:** symplectic leaves of \((M, \omega) = \text{connected components of } M\)

- **Duals of Lie algebras:** symplectic leaves of \(\mathfrak{g}^* = \text{coadjoint orbits:} \)

 \[\mathfrak{su}^*(2)\]
 \[\mathfrak{sl}^*(2, \mathbb{R})\]
 \[\mathfrak{b}\]

- **Oriented 3-manifolds:** leaves of \((M^3, \mu, F)\) are contained in the level sets of \(F : M^3 \rightarrow \mathbb{R}\).

- **Regular Poisson structures:** Poisson structures whose rank is constant are just **symplectic foliations:**
Examples of symplectic foliations

- **symplectic manifolds**: symplectic leaves of \((M, \omega) = \text{connected components of } M\)

- **Duals of Lie algebras**: symplectic leaves of \(g^* = \text{coadjoint orbits}: \)
 - \(\text{su}^*(2)\)
 - \(\text{sl}^*(2, \mathbb{R})\)
 - \(b\)

- **Oriented 3-manifolds**: leaves of \((M^3, \mu, F)\) are contained in the level sets of \(F : M^3 \to \mathbb{R}\).

- **Regular Poisson structures**: Poisson structures whose rank is constant are just **symplectic foliations**:
Local Poisson Geometry

A point $x_0 \in M$ where π vanishes is called a **singular point** (so $\{x_0\}$ is a 0-dim symplectic leave).

Definition

The **isotropy Lie algebra** of a singular point x_0 is:

$$g_{x_0} := T^* M \quad \text{with} \quad [d_{x_0} f, d_{x_0} g] := d_{x_0} \{f, g\}.$$

The dual space $T_x M$ with its linear Poisson structure is called the **linear approximation** to (M, π) at x_0.
Local Poisson Geometry

A point $x_0 \in M$ where π vanishes is called a **singular point** (so $\{x_0\}$ is a 0-dim symplectic leave).

Definition

The **isotropy Lie algebra** of a singular point x_0 is:

$$g_{x_0} := T^* M \quad \text{with} \quad [d_{x_0} f, d_{x_0} g] := d_{x_0} \{f, g\}.$$

The dual space $T_x M$ with its linear Poisson structure is called the **linear approximation** to (M, π) at x_0.

In local coordinates centered at x_0:

$$\{x^i, x^j\}(x) = \{x^i, x^j\}(x_0) + \sum_k \frac{\partial \{x^i, x^j\}}{\partial x^k}(x_0) x^k + o(2).$$

$$= \sum_k c^i_j x^k + o(2).$$
Local Poisson Geometry

A point $x_0 \in M$ where π vanishes is called a **singular point** (so $\{x_0\}$ is a 0-dim symplectic leave).

Definition

The **isotropy Lie algebra** of a singular point x_0 is:

$$g_{x_0} := T^*M \quad \text{with} \quad [d_{x_0} f, d_{x_0} g] := d_{x_0} \{f, g\}.$$

The dual space $T_x M$ with its linear Poisson structure is called the **linear approximation** to (M, π) at x_0.

In local coordinates centered at x_0:

$$\{x^i, x^j\}(x) = \{x^i, x^j\}(x_0) + \sum_k \frac{\partial \{x^i, x^j\}}{\partial x^k}(x_0) x^k + o(2).$$

$$= \sum_k c^{i j}_k x^k + o(2).$$

Linearization Problem: Can one choose coordinates around x_0 where π is linear (no higher order terms)?
Theorem (Conn, 1985)

Let x_0 be a singular point of (M, π). If \mathfrak{g}_{x_0} is a compact semisimple Lie algebra then π can be linearized around x_0: there are local coordinates (x^1, \ldots, x^m) centered at x_0 where the Poisson bracket is linear:

$$\{x^i, x^j\} = \sum_k c^{ij}_k x^k.$$
Theorem (Conn, 1985)

Let \(x_0 \) be a singular point of \((M, \pi)\). If \(\mathfrak{g}_{x_0} \) is a compact semisimple Lie algebra then \(\pi \) can be linearized around \(x_0 \):
there are local coordinates \((x^1, \ldots, x^m)\) centered at \(x_0 \) where the Poisson bracket is linear:

\[
\{x^i, x^j\} = \sum_k c_{ij}^k x^k.
\]

Remarks:

▶ The original proof used a Nash-Moser fast convergence method, requiring some hard analysis. A (more soft) geometric proof was obtained in 2011 by M. Crainic & RLF.
Theorem (Conn, 1985)

Let \(x_0 \) be a singular point of \((M, \pi) \). If \(\mathfrak{g}_{x_0} \) is a compact semisimple Lie algebra then \(\pi \) can be linearized around \(x_0 \): there are local coordinates \((x^1, \ldots, x^m) \) centered at \(x_0 \) where the Poisson bracket is linear:

\[
\{x^i, x^j\} = \sum_k c_{ij}^k x^k.
\]

Remarks:

- The original proof used a Nash-Moser fast convergence method, requiring some hard analysis. A (more soft) geometric proof was obtain in 2011 by M. Crainic & RLF.

- For other types of singularities one does not know a complete set of invariants.
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

![Diagram of symplectic leaves](image)
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π.
Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

![Diagram of symplectic leaves](image-url)
Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

![Diagram of a rolled-up cylinder](image)
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

Even under small perturbations leaves can “disappear”:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of \(\pi \):

Even under small perturbations leaves can “disappear”:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

Even under small perturbations leaves can “disappear”:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

Even under small perturbations leaves can “disappear”:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

Even under small perturbations leaves can “disappear”:
Global Poisson Geometry - Stability

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π:

Even under small perturbations leaves can “disappear”:
Theorem (M. Crainic & RLF (2010))

Let L be a compact symplectic leaf of (M, π) and assume that $H^2_{\pi}(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_{\pi}(M, L)$.

$H^\bullet_{\pi}(M, L)$ is the relative Poisson cohomology, the cohomology of the complex of multivector fields along L:

$$X^\bullet(M, L) = \Gamma(\wedge^\bullet T^*M),$$

d$\pi = [\pi, \cdot] : X^\bullet(M, L) \to X^{\bullet+1}(M, L)$.

(this is an elliptic complex). There is also a version for strong stability where “diffeomorphic” is replaced by “symplectomorphic.” The proofs involve some ideas on deforming linear complexes to non-linear complexes, that can be traced back to unpublished work of R. Hamilton on deformations of foliations.
Theorem (M. Crainic & RLF (2010))

Let L be a compact symplectic leaf of (M, π) and assume that $H^2_\pi(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_\pi(M, L)$.

$H^\bullet_\pi(M, L)$ is the relative Poisson cohomology, the cohomology of the complex of multivector fields along L:

$$\mathfrak{x}^\bullet(M, L) = \Gamma(\wedge^\bullet T_L M), \quad d_\pi = [\pi, \cdot] : \mathfrak{x}^\bullet(M, L) \to \mathfrak{x}^{\bullet+1}(M, L).$$

(this is an elliptic complex).
Theorem (M. Crainic & RLF (2010))

Let L be a compact symplectic leaf of (M, π) and assume that $H^2_\pi(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_\pi(M, L)$.

- $H^\bullet_\pi(M, L)$ is the relative Poisson cohomology, the cohomology of the complex of multivector fields along L:

$$\mathcal{X}^\bullet(M, L) = \Gamma(\wedge^\bullet T_L M), \quad d_\pi = [\pi, \cdot] : \mathcal{X}^\bullet(M, L) \to \mathcal{X}^{\bullet+1}(M, L).$$

(this is an elliptic complex).

- There is also a version for strong stability where “diffeomorphic” is replaced by “symplectomorphic”.

▶ There is also a version for strong stability where “diffeomorphic” is replaced by “symplectomorphic”.
Theorem (M. Crainic & RLF (2010))

Let L be a compact symplectic leaf of (M, π) and assume that $H^2_\pi(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_\pi(M, L)$.

- $H^\bullet_\pi(M, L)$ is the relative Poisson cohomology, the cohomology of the complex of multivector fields along L:

 $$\mathfrak{X}^\bullet(M, L) = \Gamma(\wedge^\bullet T_L M), \quad d_\pi = [\pi, \cdot] : \mathfrak{X}^\bullet(M, L) \to \mathfrak{X}^{\bullet+1}(M, L).$$

 (this is an elliptic complex).

- There is also a version for strong stability where “diffeomorphic” is replaced by “symplectomorphic”.

- The proofs involve some ideas on deforming linear complexes to non-linear complexes, that can be traced back to unpublished work of R. Hamilton on deformations of foliations.
Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes \((C^\infty(M), \{\cdot, \cdot\})\) into a Lie algebra.

▶ **Question:** Is there a Lie group “integrating” \((M, \{\cdot, \cdot\})\)?

Such a \(\infty\)-dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:

▶ **Answer:** (M. Karasev; A. Weinstein) There is a group-like object, a symplectic groupoid, associated with every Poisson manifold \((M, \{\cdot, \cdot\})\).

But there are no free meals...

▶ **Addenda:** (M.Crainic & RLF) This object always exists as a topological groupoid, is finite dimensional, but may fail to be smooth. The precise obstructions to smoothness are known.
Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes \((C^\infty(M), \{\cdot, \cdot\})\) into a Lie algebra.

▶ **Question:** Is there a Lie group “integrating” \((M, \{\cdot, \cdot\})\)?

Such a \(\infty\)-dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:
A Poisson bracket makes \((C^\infty(M), \{\cdot, \cdot\}) \) into a Lie algebra.

Question: Is there a Lie group “integrating” \((M, \{\cdot, \cdot\})\)?

Such a \(\infty\)-dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:

Answer: (M. Karasev; A. Weinstein) There is a group-like object, a symplectic groupoid, associated with every Poisson manifold \((M, \{\cdot, \cdot\})\).
Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes $(C^\infty(M), \{\cdot, \cdot\})$ into a Lie algebra.

► **Question:** Is there a Lie group “integrating” $(M, \{\cdot, \cdot\})$?

Such a ∞-dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:

► **Answer:** (M. Karasev; A. Weinstein) There is a group-like object, a **symplectic groupoid**, associated with every Poisson manifold $(M, \{\cdot, \cdot\})$.

But there are no free meals...

► **Addenda:** (M. Crainic & RLF) This object always exists as a topological groupoid, is finite dimensional, but may fail to be smooth. The precise obstructions to smoothness are known.
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \rightarrow X$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$

$$\Pi_1(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$

X ~ topological space; look at paths $\gamma : [0, 1] \to X$

$$\Pi_1(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$

X ~ topological space; look at paths $\gamma : [0, 1] \to X$

$$\Pi_1(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$

$\Pi_1(X) = \{[\gamma] | \gamma : [0, 1] \to X\}$

▶ product:

• $\tau(1)$
• $\tau(0) = \gamma(1)$
• $\gamma(0)$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$

$$\Pi_1(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$

identity:

$$u : X \hookrightarrow \Pi_1(X)$$
Digression into basic topology

X – topological space; look at paths $\gamma : [0, 1] \to X$

\[\Pi_1(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

★ inverse:

$\iota : G \longrightarrow G$
Digression into basic topology

\[X \] – topological space; look at paths \(\gamma : [0, 1] \to X \)

\[\Pi_1(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

- The space \(\Pi_1(X) \) has a natural topology and the source, target, multiplication and inverse are all continuous maps: \(\Pi_1(X) \xrightarrow{\sim} X \) is an example of a topological groupoid.
Digression into basic topology

\(X \) – topological space; look at paths \(\gamma : [0, 1] \to X \)

\[\Pi_1(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

- The space \(\Pi_1(X) \) has a natural topology and the source, target, multiplication and inverse are all continuous maps: \(\Pi_1(X) \rightrightarrows X \) is an example of a topological groupoid.

- If \(X = M \) is a manifold, the space \(\Pi_1(M) \) is a manifold and the source, target, multiplication and inverse are all smooth maps: then \(\Pi_1(M) \rightrightarrows M \) is an example of a Lie groupoid.
\((M, \pi)\) – Poisson manifold; look at cotangent paths:

\[a : [0, 1] \rightarrow T^* M \]

For any Poisson manifold \((M, \pi)\), there is a topological groupoid \(\Sigma(M) \Rightarrow M\) "integrating" it. \(\Sigma(M) = P(T^* M) // G\) is a symplectic quotient (A. Cattaneo & G. Felder).
\((M, \pi)\) – Poisson manifold; look at cotangent paths:

For any Poisson manifold \((M, \pi)\), there is a topological groupoid \(\Sigma(M) \Rightarrow M\) “integrating” it.

\[a \quad T^*M \Downarrow \quad [0, 1] \quad \gamma \rightarrow M\]

\(\Sigma(M) = P(T^*M) \div G\) is a symplectic quotient (A. Cattaneo & G. Felder).
\((M, \pi)\) – Poisson manifold; look at cotangent paths:

\[T^*M \xrightarrow{\pi^\#} TM \]

\[a \]

\[[0, 1] \xrightarrow{\gamma} M \]

\[\gamma \]

\[\dot{\gamma} \]

\[\Gamma \]

\[\Sigma(M) = P(T^*M) \]

\[G \]

\[\text{is a symplectic quotient (A. Cattaneo & G. Felder)} \]

For any Poisson manifold \((M, \pi)\), there is a topological groupoid \(\Sigma(M)\) "integrating" it.
\((M, \pi)\) – Poisson manifold; look at **cotangent paths**:

\[
\begin{array}{c}
\sum(M) = \text{cotangent paths} \\
\text{cotangent homotopies}
\end{array}
\]
\[(M, \pi) – \text{Poisson manifold; look at cotangent paths:}\]

\[
\begin{array}{ccc}
T^*M & \xrightarrow{\pi^\#} & TM \\
\downarrow a & & \downarrow \dot{\gamma} \\
[0, 1] & \xrightarrow{\gamma} & M
\end{array}
\]

\[
\Sigma(M) = \frac{\text{cotangent paths}}{\text{cotangent homotopies}}
\]

\[t \downarrow \quad s \downarrow \\
M \quad M
\]

- For any Poisson manifold \((M, \pi)\), there is a topological groupoid \(\Sigma(M) \rightrightarrows M\) “integrating” it.
(M, π) – Poisson manifold; look at cotangent paths:

$\Sigma(M) = \frac{\text{cotangent paths}}{\text{cotangent homotopies}}$

For any Poisson manifold (M, π), there is a topological groupoid $\Sigma(M) \cong M$ “integrating” it.

$\Sigma(M) = P(T^* M) // G$ is a symplectic quotient (A. Cattaneo & G. Felder).
$\Sigma(M) \Rightarrow M$ and $\Pi_1(M) \Rightarrow M$ differ substantially:

$\Pi_1(M)$ is always smooth while $\Sigma(M)$ may fail to be smooth;

$\Pi_1(M)$ has one orbit (if M connected) while orbits of $\Sigma(M)$ are the symplectic leaves of (M, π);

The homotopy groups $\pi_1(M, x) = \{\text{loops in } M \text{ based at } x\}$ homotopy are discrete while the Poisson homotopy groups $\Sigma(M, x) = \{\text{cotangent loops in } M \text{ based at } x\}$ cotangent homotopy are Lie groups (if smooth).
\(\Sigma(M) \Rightarrow M\) and \(\Pi_1(M) \Rightarrow M\) differ substantially:

- \(\Pi_1(M) \Rightarrow M\) is always smooth while \(\Sigma(M) \Rightarrow M\) may fail to be smooth;

- \(\Pi_1(M) \Rightarrow M\) has one orbit (if \(M\) connected) while orbits of \(\Sigma(M) \Rightarrow M\) are the symplectic leaves of \((M,\pi)\);

- The homotopy groups \(\pi_1(M, x) = \{\text{loops in } M \text{ based at } x\}\) homotopy are discrete while the Poisson homotopy groups \(\Sigma(M, x) = \{\text{cotangent loops in } M \text{ based at } x\}\) cotangent homotopy are Lie groups (if smooth).
\[\Sigma(M) \Rightarrow M \text{ and } \Pi_1(M) \Rightarrow M \text{ differ substantially:} \]

- \[\Pi_1(M) \Rightarrow M \text{ is always smooth while } \Sigma(M) \Rightarrow M \text{ may fail to be smooth;} \]
- \[\Pi_1(M) \text{ has one orbit (if } M \text{ connected) while orbits of } \Sigma(M) \text{ are the symplectic leaves of } (M, \pi); \]
\(\Sigma(M) \supseteq M \) and \(\Pi_1(M) \supseteq M \) differ substantially:

- \(\Pi_1(M) \supseteq M \) is always smooth while \(\Sigma(M) \supseteq M \) may fail to be smooth;

- \(\Pi_1(M) \) has one orbit (if \(M \) connected) while orbits of \(\Sigma(M) \) are the symplectic leaves of \((M, \pi) \);

- The homotopy groups

 \[
 \pi_1(M, x) = \frac{\{ \text{loops in } M \text{ based at } x \}}{\text{homotopy}}
 \]

 are \textit{discrete} while the Poisson homotopy groups

 \[
 \Sigma(M, x) = \frac{\{ \text{cotangent loops in } M \text{ based at } x \}}{\text{cotangent homotopy}}
 \]

 are \textit{Lie groups} (if smooth).
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\). There is a group morphism

\[
\partial_x : \pi_2(L, x) \to \nu_x^*(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\).
There is a group morphism

\[
\partial_x : \pi_2(L, x) \rightarrow \nu_x^*(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.

\[
\langle \partial_x(\gamma_0), \text{var}_\nu(\gamma_t) \rangle = \frac{d}{dt} \int_{S^2} \gamma_t^* \omega_L \bigg|_{x=0}
\]
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\). There is a group morphism

\[
\partial_x : \pi_2(L, x) \rightarrow \nu_x^*(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.

\[
\langle \partial_x(\gamma_0), \text{var}_\nu(\gamma_t) \rangle = \frac{d}{dt} \int_{S^2} \gamma_t^* \omega_L \bigg| \bigg|_{x=0}
\]
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\). There is a group morphism

\[
\partial_x : \pi_2(L, x) \rightarrow \nu^*_x(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.

\[
\langle \partial_x(\gamma_0), \text{var}_\nu(\gamma_t) \rangle = \frac{d}{dt} \int_{S^2} \gamma^*_t \omega_L \bigg|_{x=0}
\]
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\). There is a group morphism

\[
\partial_x : \pi_2(L, x) \to \nu_x^*(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.

\[
\langle \partial_x(\gamma_0), \text{var}_\nu(\gamma_t) \rangle = \frac{d}{dt} \int_{S^2} \gamma_t^* \omega_L \bigg|_{x=0}
\]
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\). There is a group morphism

\[
\partial_x : \pi_2(L, x) \to \nu_x^*(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.

\[
\langle \partial_x(\gamma_0), \text{var}_\nu(\gamma_t) \rangle = \frac{d}{dt} \int_{S^2} \gamma_t^* \omega_L \bigg|_{x=0}
\]
Theorem (Crainic & RLF, 2004)

Let \((M, \pi)\) be a Poisson manifold and fix a symplectic leaf \(L\). There is a group morphism

\[
\partial_x : \pi_2(L, x) \to \nu_x^*(L)
\]

controlling integrability: \(\Sigma(M)\) is smooth if and only if the groups \(\text{Im}(\partial_x)\) are uniformly discrete.

\[
\langle \partial_x(\gamma_0), \text{var}_\nu(\gamma_t) \rangle = \frac{d}{dt} \int_{S^2} \gamma_t^* \omega_L \bigg|_{x=0}
\]
Theorem (Crainic & Marcut (2012))

Let \((M, \pi)\) be a Poisson manifold. If \(\Sigma(M, x)\) is smooth and the source map is proper, then a neighborhood of any symplectic leaf \(L\) is Poisson diffeomorphic to the first order model of \(\pi\) around \(L\).
Theorem (Crainic & Marcut (2012))

Let (M, π) be a Poisson manifold. If $\Sigma(M, x)$ is smooth and the source map is proper, then a neighborhood of any symplectic leaf L is Poisson diffeomorphic to the first order model of π around L.

- There is an explicit local model, which depends on some choices.
- This result can be strengthened by replacing $\Sigma(M)$ by other symplectic groupoids integrating (M, π).
- This result can be generalized by replacing the symplectic leaf L by more general Poisson submanifolds.
- Several proofs are available. The most geometric uses a new notion of simplicial metric on the nerve of a groupoid, which has many potential applications (del Hoyo and RLF (2016)).
Definition

A **star product** is an associative product \star_{\hbar} on $C^\infty(M)[[\hbar]]$ deforming the usual product:

$$f \star_{\hbar} g = \sum_{n=0}^{\infty} B_n(f, g) \hbar^n, \quad \text{where } B_0(f, g) = fg.$$
Deformation quantization

Definition
A star product is an associative product \star_\hbar on $C^\infty(M)[[\hbar]]$ deforming the usual product:

$$f \star_\hbar g = \sum_{n=0}^{\infty} B_n(f, g) \hbar^n,$$

where $B_0(f, g) = fg$.

▶ We assume that \star_\hbar is natural, meaning that each B_k is a bidifferential operator of order $\leq k$.

\triangleright We have Shr"odinger's Equation:

$$\frac{df}{dt} = \frac{1}{\hbar} [h, f] \star_\hbar \hbar.$$
Deformation quantization

Definition

A **star product** is an associative product \star_\hbar on $C^\infty(M)[[\hbar]]$ deforming the usual product:

$$f \star_\hbar g = \sum_{n=0}^{\infty} B_n(f, g) \hbar^n,$$

where $B_0(f, g) = fg$.

- We assume that \star_\hbar is *natural*, meaning that each B_k is a bidifferential operator of order $\leq k$.
- A natural star product induces a Poisson structure on M:

 $$\{f, g\} := \lim_{\hbar \to 0} \frac{1}{\hbar} [f, g]_{\star_\hbar}$$
Deformation quantization

Definition

A **star product** is an associative product \star_\hbar on $C^\infty(M)[[\hbar]]$ deforming the usual product:

$$f \star_\hbar g = \sum_{n=0}^{\infty} B_n(f, g)\hbar^n,$$

where $B_0(f, g) = fg$.

- We assume that \star_\hbar is *natural*, meaning that each B_k is a bidifferential operator of order $\leq k$.
- A natural star product induces a Poisson structure on M:

$$\{f, g\} := \lim_{\hbar \to 0} \frac{1}{\hbar} [f, g]_{\star_\hbar} = \lim_{\hbar \to 0} \frac{1}{\hbar} (f \star_\hbar g - g \star_\hbar f)$$
Deformation quantization

Definition
A star product is an associative product \star_\hbar on $C^\infty(M)[[\hbar]]$ deforming the usual product:

$$f \star_\hbar g = \sum_{n=0}^{\infty} B_n(f, g) \hbar^n,$$

where $B_0(f, g) = fg$.

- We assume that \star_\hbar is natural, meaning that each B_k is a bidifferential operator of order $\leq k$.
- A natural star product induces a Poisson structure on M:

$$\{f, g\} := \lim_{\hbar \to 0} \frac{1}{\hbar} [f, g]_{\star_\hbar} = \lim_{\hbar \to 0} \frac{1}{\hbar} (f \star_\hbar g - g \star_\hbar f)$$

- Given $h \in C^\infty(M)$ we have Shrödinger’s Equation:

$$\frac{df}{dt} = \frac{1}{\hbar} [h, f]_{\star_\hbar}$$
Existence of deformation quantizations

Theorem (Kontsevich (2002))

Given a Poisson manifold \((M, \pi)\) there exists a star product \(\star_{\hbar}\) inducing \(\pi\).
Existence of deformation quantizations

Theorem (Kontsevich (2002))

Given a Poisson manifold \((M, \pi)\) *there exists a star product* \(\star_\hbar\)
inducing \(\pi\).

- This theorem is a consequence of a much more general result, Kontsevich’s Formality Theorem, which asserts the existence of a certain \(L_\infty\)-isomorphism between two DGLA.
Existence of deformation quantizations

Theorem (Kontsevich (2002))

Given a Poisson manifold \((M, \pi)\) there exists a star product \(\star_\hbar\) inducing \(\pi\).

This theorem is a consequence of a much more general result, Kontsevich’s Formality Theorem, which asserts the existence of a certain \(L_\infty\)-isomorphism between two DGLA.

Kontsevich gives an explicit formula for \(\star_\hbar\).
Existence of deformation quantizations

Theorem (Kontsevich (2002))

Given a Poisson manifold \((M, \pi)\) there exists a star product \(\ast_\hbar\) inducing \(\pi\).

- This theorem is a consequence of a much more general result, Kontsevich’s Formality Theorem, which asserts the existence of a certain \(L_\infty\)-isomorphism between two DGLA.
- Kontsevich gives an explicit formula for \(\ast_\hbar\).
- Kontsevich’s Formality also gives a *classification* of all star products \(\ast_\hbar\) inducing \(\pi\).
Non-formal deformation quantization

Kontsevich’s Theorem gives existence of *formal* star products \star_\hbar. What about *non-formal* star products?

Conjecture (RLF, 2018)
If there exists a non-formal star product \star_\hbar inducing π, then (M, π) must be integrable by a symplectic groupoid $G \Rightarrow M$.

Together with Alejandro Cabrera (UFRJ), we have the following strategy to prove this conjecture:

Step 1 From a non-formal star product \star_\hbar construct a *local* symplectic groupoid $G \Rightarrow M$ integrating (M, π);

Step 2 Associativity of \star_\hbar implies that $G \Rightarrow M$ satisfies n-associativity for all $n \in \mathbb{N}$, i.e., it is *globally* associative.

Step 3 Use result of RLF & Michiels (2018): if $G \Rightarrow M$ is globally associative then it extends to a global symplectic groupoid.

Note: This works in the formal case, producing a *formal* symplectic groupoid (Karabegov, Cattaneo & Felder, Contreras)
Non-formal deformation quantization

Kontsevich’s Theorem gives existence of formal star products $\star \hbar$. What about non-formal star products?

Conjecture (RLF, 2018)

If there exists a non-formal star product $\star \hbar$ inducing π, then (M, π) must be integrable by a symplectic groupoid.

Together with Alejandro Cabrera (UFRJ), we have the following strategy to prove this conjecture:

Step 1 From a non-formal star product $\star \hbar$ construct a local symplectic groupoid $G \Rightarrow M$ integrating (M, π);

Step 2 Associativity of $\star \hbar$ implies that $G \Rightarrow M$ satisfies n-associativity for all $n \in \mathbb{N}$, i.e., it is globally associative.

Step 3 Use result of RLF & Michiels (2018): if $G \Rightarrow M$ is globally associative then it extends to a global symplectic groupoid.

Note: This works in the formal case, producing a formal symplectic groupoid (Karabegov, Cattaneo & Felder, Contreras)
Non-formal deformation quantization

Kontsevich’s Theorem gives existence of formal star products \star_\hbar. What about non-formal star products?

Conjecture (RLF, 2018)
If there exists a non-formal star product \star_\hbar inducing π, then (M, π) must be integrable by a symplectic groupoid

Together with Alejandro Cabrera (UFRJ), we have the following strategy to prove this conjecture:

Step 1 From a non-formal star product \star_\hbar construct a local symplectic groupoid $G \rightrightarrows M$ integrating (M, π);

Step 2 Associativity of \star_\hbar implies that $G \rightrightarrows M$ satisfies n-associativity for all $n \in \mathbb{N}$, i.e., it is globally associative.

Step 3 Use result of RLF & Michiels (2018): if $G \rightrightarrows M$ is globally associative then it extends to a global symplectic groupoid.

Note: This works in the formal case, producing a formal symplectic groupoid (Karabegov, Cattaneo & Felder, Contreras)
Many other directions in Poisson geometry

▶ b-symplectic manifolds: Guillemin, Miranda & Pires; Gualtieri, Pelayo & Ratiu; Marcut & Osorno-Torres . . .

▶ Generalized complex geometry: Hitchin; Bursztyn, Calvacanti & Gualtieri, Baley; . . .

▶ Poisson-Lie groups and Poisson homogeneous spaces: Drinfeld; Semenov-Tian-Shansky; Lu & Evens; Yakimov; Kosmann-Schwarzbach; Reshetikhin . . .

▶ Moduli spaces and twisted-Poisson structures: Alekseev & Meinrenken; Boalch; Li-Bland & Severa; . . .

▶ Cluster algebras: Fomin & Zelevinsky; Gekhtman, Shapiro & Vainshtein; . . .

▶ Poisson manifolds of compact type: Crainic, RLF, Martinez-Torrres, Zung; . . .

▶ . . .
there is still a lot of very tasty *Poisson* to be fished!!!

http://poissongeometry.org