12) Symplectic vs Contact Geometry

(Mention Homework set #3; Due Oct. 21)

(Λ,ω) - symplectic manifold

$i: N^m \to \Lambda^n$ - codimension 1 submanifold

$X \in \mathcal{X}(M)$ - vector field defined on some tubular neighborhood of N.

(i) $\mathcal{L}_X \omega = \omega <\omega (\varphi^t_\omega)\omega = e^t \omega$ (Liouville vector field)

(ii) $X + N : T\Lambda M = T\Lambda N \oplus \langle X \rangle$

Then:

$\alpha := i^x(l_x \omega) \in \Omega^1(M)$

$\Rightarrow d\alpha = i^x(d(l_x \omega)) = i^x(l_x d\omega) = i^x \omega$

$\Rightarrow \alpha \wedge (\wedge(d\alpha))^{-1} = i^x(l_x \omega \wedge \omega^{-1})$ non-vanishing!

$\Rightarrow \alpha \in \Omega^1(N)$ is a contact form. We say that N is of contact type

Conversely, any contact form is obtained in this way:

Theorem (symplectization)

Let $\alpha \in \Omega^1(N)$ be a contact form. Then $M = N \times \mathbb{R}$ carries the symplectic form:

$\omega = d\left(e^t \left|_{N} \alpha \right\right)$

Remark: The vector field $X = \frac{\partial}{\partial t}$ is transverse to $N \times \{0\} \subset N \times \mathbb{R}$ and:

$\mathcal{L}_X \omega = \omega, \ \alpha = i^x(l_x \omega)$
Proof: \(\omega \) is clearly closed. So all one needs to check is non- degeneracy:
\[
\omega = e^t \left(dt \wedge p^x dx + p^y dw \right)
\]
\[
\Rightarrow \omega^m = e^t \left(dt \wedge p^x dx \wedge (da \wedge (dx^y)) \right) \text{ man-degenerate.}
\]

Properties of The Symplectization:

- \(L \subset (\mathbb{N}, \lambda) \) is a Legendrian submanifold iff \(L \times \mathbb{R} (\mathbb{M}, \omega) \) is Lagrangian.
- \(\psi : \mathbb{N} \rightarrow \mathbb{N} \) is contactomorphism with \(\psi^* \omega = e^\lambda \omega \) iff the map \(\hat{\psi} : \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{N} \times \mathbb{R} \)
 \[
 \hat{\psi}(\alpha, t) = (\psi(\alpha), t - \beta(\alpha))
 \]
 is a symplectomorphism.

If \((\mathbb{M}, \omega)\) is symplectic and \(N \subset (\mathbb{M}, \omega) \) is an hypersurface of contact type, then it has a "positive side" into each any Liouville vector field points (exercise).

Definition:

A contact manifold \((\mathbb{N}, \xi = \ker \alpha)\) is called symplectically fillable if there exists a symplectic manifold \((\mathbb{M}, \omega)\) where \(N \) embeds as an hypersurface of contact type and \(N = \partial W \), where \(W \subset M \) is a compact submanifold which lies on the negative side of \(N \).
In dimension 3:

- A 2-disk $D(c(N, S))$ is called _overtwisted_ if N is one of the foliations:

\[
\begin{align*}
\text{Degenerate} & \quad \text{Non-degenerate}
\end{align*}
\]

A contact structure (N^3, ξ) is called _overtwisted_ if it admits an overtwisted disk. Otherwise, it is called a _tight_ contact structure.

Exercise: Show that $(\mathbb{R}^3, \omega_{std})$ is overtwisted.

Eliashberg: Given a compact 3-manifold, every oriented plane field is homotopic via oriented plane fields to an overtwisted contact structure.

(Generalise to any odd dimensions by Borman, Eliashberg and Murphy for appropriate notion of "overtwisted").

Eliashberg-Gromov: If a compact contact 3-manifold is fillable, then it is tight.

Etzur-Rouan: There exists a compact 3-manifold that does not support any tight contact structure.