Symmetric Spaces
Xinghua Gao
May 5, 2014

Notations

\(M \) Riemannian manifold.
\(N \) normal neighborhood of the origin in \(T_pM \).
\(N_p \) normal neighbourhood of \(p \), \(N_p = \text{exp} N_0 \).
\(s_p \) geodesic symmetry with respect to \(p \).
\(f^\Phi \) \(d\Phi f = f \circ \Phi \).
\(X^\Phi \) \(d\Phi X \).
\(K(S) \) sectional curvature of \(M \) at \(p \) along the section \(S \).
\(D^r_s \) set of tensor fields of type \((r, s)\).
\(I(M) \) the set of all isometries on \(M \).

1 Affine Locally Symmetric Space, Isometry Group and Others

Definition 1 (normal neighborhood) A neighborhood \(N_p \) of \(p \) in \(M \) is called a normal neighbourhood if \(N_p = \text{exp} N_0 \), where \(N_0 \) is a normal neighborhood of the origin in \(T_pM \), i.e. satisfying: (1) \(\text{exp} \) is a diffeomorphism of \(N_0 \) onto an open neighborhood \(N_p \); (2) if \(X \in N_0 \), \(0 \leq t \leq 1 \), then \(tX \in N_p \) (star shaped).

Definition 2 (geodesic symmetry) \(\forall q \in N_p \), consider the geodesic \(t \to \gamma(t) \subset N_p \) passing through \(p \) and \(q \) s.t. \(\gamma(0) = p \), \(\gamma(1) = q \). Then the mapping \(q \to q^\prime = \gamma(-1) \) of \(N_p \) onto itself is called geodesic symmetry w.r.t \(p \), denoted by \(s_p \).

Remark: \(s_p \) is a diffeomorphism of \(N_p \) onto itself and \((ds_p)_p = -I \).

Definition 3 (Affine locally symmetric) \(M \) is called affine locally symmetric if each point \(m \in M \) has an open neighborhood \(N_m \) on which the geodesic symmetry \(s_m \) is an affine transformation. i.e. \(\nabla_X(Y) = (\nabla_{X^s_m}(Y^{s_m}))^{s_m^{-1}} \), \(\forall X, Y \in \mathfrak{X}(M) \).

Definition 4 (Pseudo-Riemannian structure) Let \(M \) be a \(C^\infty \)-manifold. A pseudo-Riemannian structure on \(M \) is a symmetric nondegenerate (as bilinear form at each \(p \in M \)) tensor field \(g \) of type \((0, 2)\).

Remark: A pseudo-Riemannian manifold is a connected \(C^\infty \)-manifold with
a pseudo-Riemannian structure. \(g \) is called a Riemannian structure iff \(g_p \) is positive definite \(\forall p \in M \).

Definition 5 (Isometry) Let \(M \) and \(N \) be two \(C^\infty \) manifolds with pseudo-Riemannian structures \(g \) and \(h \), respectively. Let \(\phi \) be a mapping of \(M \) into \(N \).

Then \(\phi \) is called an isometry if \(\phi \) is a diffeomorphism of \(M \) onto \(N \) and \(\phi^* h = g \). \(\phi \) is called a local isometry if for each \(p \in M \) there exist open neighborhoods \(U \) of \(p \) and \(V \) of \(\phi(p) \) s.t. \(\phi \) is an isometry of \(U \) onto \(V \).

Definition 6 (Riemannian locally symmetric space) \(M \) is called a Riemannian locally symmetric space if for each \(p \in M \) \(\exists \) a normal neighborhood \(N_p \) of \(p \) on which the geodesic symmetry \(s_p \) is an isometry, i.e. \(s_p(g) = g \), where \(g \) is the pseudo-Riemannian structure on \(N_p \subset M \). (\(s_p \) is a local isometry from \(M \) to itself).

2 **Definition of Symmetric Space**

Definition 7 (Riemannian Globally Symmetric Space) Let \(M \) be an analytic Riemannian manifold, \(M \) is called Riemannian globally symmetric if each \(p \in M \) is an isolated fixed point of an involutive (its square but not the mapping itself is the identity) isometry \(s_p \) of \(M \). Or equivalently \(\forall p \in M \) there is some \(s_p \in I(M) \) with the properties: \(s_p(p) = p \), \((ds_p)_p = -I \).

Example 1: Euclidean Space

Let \(M = \mathbb{R}^n \) with the Euclidean metric. The geodesic symmetry at any point \(p \in \mathbb{R}^n \) is the point reflection \(s_p(p + v) = p - v \). The isometry group is the Euclidean group \(E(n) \) generated by translations and orthogonal linear maps; the isotropy group of the origin is the orthogonal group \(O(n) \). Note that the symmetries do not generate the full isometry group \(E(n) \) but only a subgroup which is an order-two extension of the translation group.

Example 2: The Sphere

Let \(M = S^n \) be the unit sphere with the standard scalar product. The symmetry at any \(x \in S^n \) is the reflection at the line \(\mathbb{R}x \subset \mathbb{R}^{n+1} \), i.e. \(s_x(y) = -y + 2\langle y, x \rangle x \) (the component of \(y \) in \(x \)-direction, \(\langle y, x \rangle x \), is preserved while the orthogonal complement \(y(y, x)x \) changes sign). In this case, the symmetries generate the full isometry group which is the orthogonal group \(O(n+1) \). The isotropy group of the last standard unit vector \(e_{n+1} = (0, ..., 0, 1)^T \) is \(O(n) \subset O(n+1) \).

Example 3: Compact Lie groups

Let \(M = G \) be a compact Lie group with biinvariant Riemannian metric, i.e. left and right translations \(L_g, R_g : G \to G \) acts as isometries for any \(g \in G \). Then \(G \) is a symmetric space where the symmetry at the unit element \(e \in G \) is the inversion \(s_e(g) = g^{-1} \). Then \(s_e(e) = e \) and \(ds_e(v) = -v \) for any \(v \in \mathfrak{g} = T_eG \), so the involutive condition is satisfied. We have to check that \(s_e \) is an isometry,
i.e. \((ds_e)_g\) preserves the metric for any \(g \in G\). This is certainly true for \(g = e\), and for arbitrary \(g \in G\) we have the relation \(s_e \circ L_g = R_{g^{-1}} \circ s_e\) which shows \((ds_e)_g \circ (dL_g)_e = (dR_{g^{-1}})_e \circ (ds_e)_e\). Thus \((ds_e)_g\) preserves the metric since so do the other three maps in the above relation.

Example 4: Projection model of the Grassmannians

Let \(S = G_k(\mathbb{R}^n)\) be the set of all \(k\)-dimensional linear subspaces of \(\mathbb{R}^n\). The group \(O(n)\) acts transitively on this set. The symmetry \(s_E\) at any \(E \in G_k(\mathbb{R}^n)\) will be the reflection \(s_E\) with fixed space \(E\), i.e. with eigenvalue 1 on \(E\) and \(-1\) on \(E^\perp\).

But what is the manifold structure and the Riemannian metric on \(G_k(\mathbb{R}^n)\)? One way to see this is to embed \(G_k(\mathbb{R}^n)\) into the space \(S(n)\) of symmetric real \(n \times n\) matrices: We assign to each \(k\)-dimensional subspace \(E \in \mathbb{R}^n\) the orthogonal projection matrix \(p_E\) with eigenvalues 1 on \(E\) and 0 on \(E^\perp\). Let \(P(n) = \{p \in S(n)\mid p^2 = p\}\) denote the set of all orthogonal projections. This set has several mutually disconnected subsets, corresponding to the trace of the elements which here is the same as the rank:

\[
P(n)_k = P(n) \subset S(n)_k, \quad S(n)_k = \{x \subset S(n) \mid \text{trace } x = k\}
\]

Now we may identify \(G_k(\mathbb{R}^n)\) with \(P(n)_k \subset S(n)_k\), using the embedding \(E \mapsto p_E\) which is equivariant in the sense \(g p_E g^T = p_{gE}\) for any \(g \in O(n)\). In fact, each \(p_E\) lies in this set, and vice versa, a symmetric matrix \(p\) satisfying \(p^2 = p\) has only eigenvalues 1 and 0 with eigenspaces \(E = \text{im } p\) and \(E^\perp = \ker p\), hence \(p = p_E\), and the trace condition says that \(E\) has dimension \(k\). \(P(n)_k\) is a submanifold of the affine space \(S(n)_k\) since it is the conjugacy class of the matrix

\[
p_0 = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}
\]

i.e. the orbit of \(p_0\) under the action of the group \(O(n)\) on \(S(n)\) by conjugation. The isotropy group of \(p_0\) is \(O(k) \times O(n-k) \subset O(n)\). A complement of \(T_l(O(k) \times O(n-k))\) in \(T_lO(n)\) is the space of matrices of the type

\[
\begin{pmatrix} 0 & -L^T \\ L & 0 \end{pmatrix}
\]

with arbitrary \(L \in R^{(n-k)\times k}\), thus \(P(n)_k = G_k(\mathbb{R}^n)\) has dimension \(k(n-k)\).

Define \(F: S(n) \rightarrow S(n), F(p) = p^2 - p\), then \(P(n)_k = G_k(\mathbb{R}^n) \subset F^{-1}(0)\), the kernel \(\ker dF_p\) is contained in \(T_pG_k(\mathbb{R}^n)\). But the subspace \(\ker dF_p = \{v \in S(n)\mid vp + pv = v\}\) is isomorphic to \(\text{Hom}(E, E^\perp)\) since it contains precisely the symmetric matrices mapping \(E = \text{im } p\) into \(E^\perp\) and vice versa. Thus \(\ker dF_p = T_pG_k(\mathbb{R}^n)\).

Now we equip \(P(n)_k \subset S(n)\) with the metric induced from the trace scalar product \(<x, y> = \text{trace}(x^T y) = \text{trace}(xy)\) on \(S(n)\). The group \(O(n)\) acts isometrically on \(S(n)\) by conjugation and preserves \(P(n)_k\), hence it acts isometrically on \(P(n)_k\). In particular, let \(s_E \in O(n)\) be the reflection at the subspace
E and let \hat{s}_E be the corresponding conjugation, $\hat{s}_E(x) = s_E x s_E$. This is an isometry fixing p_E, and since s_E fixes E and reflects E^\perp, the conjugation \hat{s}_E maps any $x \in T_{p_E}G_k(\mathbb{R}^n)$ into $-x$ (x is a linear map from E to E^\perp and vice versa). Thus \hat{s}_E is the symmetry at p_E.

3 Homogeneous description

For a symmetric space, we have theorem:

Theorem 1 Let M be a Riemannian symmetric space and p_0 any point in M. Let $G = I(M)_0$ be the identity component of the isometry group and K be the isotropy group of G at p_0. Then K is a compact subgroup of the connected group G and G/K is analytically diffeomorphic to M under the mapping $gK \to g(p_0)$, $g \in G$.

So we can get think of symmetric spaces as the homogeneous space of the isometry group G. A natural question to ask is what group G and subgroup K will lead to a symmetric space. To answer this question, we need the definition of Riemannian symmetric pairs.

3.1 From Symmetric space to Symmetric Pairs

Definition 8 (symmetric pair) Let G be a connected Lie group and K a closed subgroup. The pair (G, K) is called a symmetric pair if there exists an involutive analytic automorphism σ of G s.t. $(G_{\sigma})_0 \subset K \subset G_{\sigma}$, where G_{σ} is the set of fixed points of σ in G and $(G_{\sigma})_0$ is the identity component of G_{σ}.

If in addition, $\text{Ad}_{G}(K)$ (the adjoint group of K in G) is compact, (G, K) is said to be a Riemannian symmetric pair.

We can get symmetric pairs from symmetric spaces:

Theorem 2 Let M be a symmetric space with a fixed point p_0, $G = I(M)_0$ be the identity component of the isometry group and let K be the isotropy group of G at p_0. Then the map $G/K \to M$ with $K \mapsto g(p_0)$ is a bijection. The group G has an involutive automorphism σ given by $\sigma : G \to G$, $g \mapsto s_{p_0} \circ g \circ s_{p_0}$ with stabilizer $(G_{\sigma})_0 \subset K \subset G_{\sigma}$.

$\text{Ad}(K)$ is compact since K is closed and bounded and Ad is a homeomorphism. So (G, K) is a Riemannian symmetric pair.

3.2 From Symmetric Pairs to Symmetric Space

In fact symmetric pairs lead to symmetric spaces.

Theorem 3 Let M be a Riemannian manifold and $I(M)$ the set of all isometries of M. Then

(1) The compact open topology of $I(M)$ turns $I(M)$ into a locally compact topological transformation group.
(2) Let \(p \in M \) and let \(\tilde{K} \) denote the subgroup of \(I(M) \) which leaves \(p \) fixed. Then \(\tilde{K} \) is compact.

Theorem 4 Let \((G, K)\) be a Riemannian symmetric pair. Let \(\pi \) denote the natural mapping of \(G \) onto \(G/K \) and put \(o = \pi(e) \). Let \(\sigma \) be any analytic, involutive automorphism of \(G \) on \(M = G/K \) s.t. \((G_o) \subset K \subset G_o\). Then there is a \(G \)-invariant Riemannian structure \(Q \) on \(M \) that makes \((M, Q)\) a Riemannian globally symmetric space. The geodesic symmetry \(s_o \) satisfies
\[
 s_o \circ \pi = \pi \circ \sigma, \quad \tau(\sigma(g)) = s_o \tau(g) s_o, \quad g \in G
\]
where \(\tau \) is the parallel translation. In particular, \(s_o \) is independent of the choice of \(Q \).

So we get a Riemannian symmetric space \(M = G/K \) from a symmetric pair \((G, K)\).

Example 4: The Compact Grassmannian

First consider the Grassmannian of oriented \(k \)-planes in \(\mathbb{R}^{k+l} \), denoted by \(M = \widetilde{G}_k(\mathbb{R}^{k+l}) \). Thus, each element in \(M \) is a \(k \)-dimensional subspace of \(\mathbb{R}^{k+l} \) together with an orientation. We shall assume that we have the orthogonal splitting \(\mathbb{R}^{k+l} = \mathbb{R}^k \oplus \mathbb{R}^l \), where the distinguished element \(p = \mathbb{R}^k \) takes up the first \(k \) coordinates in \(\mathbb{R}^{k+l} \) and is endowed with its natural positive orientation.

Let us first identify \(M \) as a homogeneous space. Observe that \(O(k+1) \) acts on \(\mathbb{R}^{k+l} \). As such, it maps \(k \)-dimensional subspaces to \(k \)-dimensional subspaces, and does something uncertain to the orientations of these subspaces. We therefore get that \(O(k+1) \) acts transitively on \(M \). This is, however, not the isometry group as the matrix \(-I \in SO(k+l)\) acts trivially if \(k \) and \(l \) are even.

The isotropy group consists of those elements that keep \(R^k \) fixed as well as preserving the orientation. Clearly, the correct isotropy group is then: \(SO(k) \times O(l) \subset O(k+1) \).

The tangent space at \(p = \mathbb{R}^k \) is naturally identified with the space of \(k \times l \) matrices \(Mat_{k \times l} \), or equivalently, with \(\mathbb{R}^k \otimes \mathbb{R}^l \). The isotropy action of \(SO(k) \times O(l) \) on \(Mat_{k \times l} \) now acts as follows:
\[
 SO(k) \times O(l) \times Mat_{k \times l} \to Mat_{k \times l}, \quad (A, B, X) \mapsto AXB^{-1} = AXB^T
\]
The representation, when seen as acting on \(\mathbb{R}^k \otimes \mathbb{R}^l \), is denoted by \(SO(k) \otimes O(l) \).

To see that \(M \) is a symmetric space, we have to show that the isotropy group contains the required involution. On the tangent space \(T_p M = Mat_{k \times l} \) it is supposed to act by multiplication by \(-1\). Thus, we have to find \((A, B) \in SO(k) \times O(l)\) such that for all \(X, AXB^T = -X \).

Clearly, we can just set: \(A = I_k \), \(B = -I_l \). Depending on \(k \) and \(l \), other choices are possible, but they will act in the same way.

We have now exhibited \(M \) as a symmetric space, although we didn’t use the isometry group of the space. Instead, we used a finite covering of the isometry group and then had some extra elements that acted trivially.
Remark: If we define X to be the matrix that is 1 in the (1, 1) entry and otherwise zero, then \(AXB^T = A_1(B_1^1)T \), where \(A_1 \) is the first column of \(A \) and \(B_1 \) is the first column of \(B \). Thus, the orbit of \(X \), under the isotropy action, generates a basis for \(\text{Mat}_{k \times l} \) but does not cover all of the space. This is an example of an irreducible action on Euclidean space that is not transitive on the unit sphere.

Note: Example 2(sphere) and 4(Grassmannian) arises as so are called extrinsic symmetric spaces: A submanifold \(S \subset \mathbb{R}^N \) is called extrinsic symmetric if it is preserved by the reflections at all of its normal spaces. More precisely, let \(s_p \) be the isometry of \(\mathbb{R}^N \) fixing \(p \) whose linear part \(ds_p \) acts as identity \(I \) on the normal space \(\nu_p S \) and as \(-I\) on the tangent space \(T_p S \), then \(S \) is extrinsic symmetric if \(s_p(S) = S \) for all \(p \in S \). Extrinsic symmetric spaces are classified.

<table>
<thead>
<tr>
<th>Iso</th>
<th>Iso_{iso}</th>
<th>dim</th>
<th>rank</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(n + 1)</td>
<td>SO(n)</td>
<td>n</td>
<td>1</td>
<td>Sphere</td>
</tr>
<tr>
<td>O(n + 1)</td>
<td>O(n) × {1, -1}</td>
<td>n</td>
<td>1</td>
<td>(\mathbb{R}P^n)</td>
</tr>
<tr>
<td>U(n + 1)</td>
<td>U(n) × U(1)</td>
<td>2n</td>
<td>1</td>
<td>(\mathbb{C}P^n)</td>
</tr>
<tr>
<td>Sp(n + 1)</td>
<td>Sp(n) × Sp(1)</td>
<td>4n</td>
<td>1</td>
<td>(\mathbb{H}P^n)</td>
</tr>
<tr>
<td>(F_4)</td>
<td>Spin(9)</td>
<td>16</td>
<td>1</td>
<td>(QP^2)</td>
</tr>
<tr>
<td>SO(p + q)</td>
<td>SO(p) × SO(q)</td>
<td>pq</td>
<td>\text{min}(p,q)</td>
<td>real Grassmannian</td>
</tr>
<tr>
<td>SU(p + q)</td>
<td>S(U(p) × U(q))</td>
<td>2pq</td>
<td>\text{min}(p,q)</td>
<td>complex Grassmannian</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iso</th>
<th>Iso_{iso}</th>
<th>dim</th>
<th>rank</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(n, 1)</td>
<td>SO(n)</td>
<td>n</td>
<td>1</td>
<td>Hyperbolic space</td>
</tr>
<tr>
<td>O(n, 1)</td>
<td>O(n) × {1, -1}</td>
<td>n</td>
<td>1</td>
<td>Hyperbolic (\mathbb{R}P^n)</td>
</tr>
<tr>
<td>U(n, 1)</td>
<td>U(n) × U(1)</td>
<td>2n</td>
<td>1</td>
<td>Hyperbolic (\mathbb{C}P^n)</td>
</tr>
<tr>
<td>Sp(n, 1)</td>
<td>Sp(n) × Sp(1)</td>
<td>4n</td>
<td>1</td>
<td>Hyperbolic (\mathbb{H}P^n)</td>
</tr>
<tr>
<td>(F_4)</td>
<td>Spin(9)</td>
<td>16</td>
<td>1</td>
<td>Hyperbolic (QP^2)</td>
</tr>
<tr>
<td>SO(p, q)</td>
<td>SO(p) × SO(q)</td>
<td>pq</td>
<td>\text{min}(p,q)</td>
<td>Hyperbolic Grassmannian</td>
</tr>
<tr>
<td>SU(p, q)</td>
<td>S(U(p) × U(q))</td>
<td>2pq</td>
<td>\text{min}(p,q)</td>
<td>Complex hyperbolic Grassmannian</td>
</tr>
</tbody>
</table>

Figure 1: some classification

References

