1. (30 points) Consider the permutation:

\[\sigma = (174)(246)(145) \]

i) Find a decomposition of \(\sigma \) into a product of disjoint cycles.

ii) Find a decomposition of \(\sigma \) into a product of transpositions.

iii) How unique are these two decompositions?
2. (30 points)
 i) Determine the invertible elements in \mathbb{Z}_{18}.
 ii) Find all integers x that satisfy the equation $5x \equiv 8 \pmod{18}$.

3. (20 points) Let \(R \subset \mathbb{R}^2 \) be a triangle and denote by \(K \) its group of symmetries. Show that \(K \) is \textbf{not} isomorphic to the group \((\mathbb{Z}_6, +)\).
4. (20 points) Show that the set of affine transformations $T : \mathbb{R}^n \to \mathbb{R}^n$ of the form:

$$T(\vec{x}) = A\vec{x} + \vec{b},$$

where A is a $n \times n$ matrix with $\det A \neq 0$ and $\vec{b} \in \mathbb{R}^n$ is a vector, is a group with binary operation composition of transformations.