Outline

1. General Info
2. 9.4 The Local Time of Linear Brownian Motion
HW7 is due Friday, 12/11, at noon. Please submit your homework via the course Moodle page. Make sure that your HW is uploaded successfully.

HW6 has been graded now.
HW7 is due Friday, 12/11, at noon. Please submit your homework via the course Moodle page. Make sure that your HW is uploaded successfully.

HW6 has been graded now.
Outline

1. General Info

2. 9.4 The Local Time of Linear Brownian Motion
Throughout this section, $B = (B_t)_{t \geq 0}$ is a 1-dim Brownian motion started from 0 and (\mathcal{F}_t) is the (completed) canonical filtration of B.

The following theorem, which is known as Trotter’s theorem, is essentially a restatement of the results of the previous sections in the special case of 1-dim Brownian motion. Still the importance of the result justifies this repetition. We write $\text{supp}(\mu)$ for the topological support of a finite measure μ on \mathbb{R}_+.
Throughout this section, \(B = (B_t)_{t \geq 0} \) is a 1-dim Brownian motion started from 0 and \((\mathcal{F}_t) \) is the (completed) canonical filtration of \(B \).

The following theorem, which is known as Trotter’s theorem, is essentially a restatement of the results of the previous sections in the special case of 1-dim Brownian motion. Still the importance of the result justifies this repetition. We write \(\text{supp}(\mu) \) for the topological support of a finite measure \(\mu \) on \(\mathbb{R}_+ \).
Theorem 9.12 (Trotter)

There exists a (unique) process $(L^a_t(B))_{a \in \mathbb{R}, t \geq 0}$, whose sample paths are continuous functions of the pair (a, t), such that, for every fixed $a \in \mathbb{R}$, $(L^a_t(B))_{t \geq 0}$ is an increasing process, and, a.s. for every $t \geq 0$, for every non-negative measurable function ϕ on \mathbb{R},

$$\int_0^t \phi(B_s)ds = \int_{\mathbb{R}} \phi(a)L^a_t(B)da.$$

Furthermore, a.s. for every $a \in \mathbb{R}$,

$$\text{supp}(d_sL^a_s(B)) \subset \{s \geq 0 : B_s = a\}. \quad (1)$$

and this inclusion is an equality with probability one if a is fixed.
Proof of Theorem 9.12

The first assertion follows by applying Theorem 9.4 and Corollary 9.7 to \(X = B \), noting that \(\langle B, B \rangle_t = t \). We have already seen that the inclusion (1) holds with probability one if \(a \) is fixed, hence simultaneously for all rationals, a.s. A continuity argument allows us to get that (1) holds simultaneously for all \(a \in \mathbb{R} \) outside a single set of probability zero. Indeed, suppose that for some \(a \in \mathbb{R} \) and \(0 \leq s < t \), we have \(L^a_t(B) > L^a_s(B) \) and \(B_r \neq a \) for every \(r \in [s, t] \).

Then we can find a rational \(b \in \mathbb{R} \) sufficiently close to \(a \) such that the same properties hold when \(a \) is replaced by \(b \), giving a contradiction.

Now let’s verify that (1) is an a.s. equality if \(a \in \mathbb{R} \) is fixed. So let us fix \(a \in \mathbb{R} \) and for every rational \(q \geq 0 \), define

\[H_q = \inf \{ t \geq q : B_t = a \}. \]

Our claim will follow if we can verify that a.s. for every \(\epsilon > 0 \),

\[L^a_{H_q+\epsilon} > L^a_{H_q}. \]

Using the strong Markov property at time \(H_q \), it suffices
to prove that, if B' is a 1-dim Brownian motion started from a, we have $L^a_\epsilon(B') > 0$, for every $\epsilon > 0$, a.s. Clearly we can take $a = 0$. We then observe that we have

$$L^0_\epsilon(B) = \sqrt{\epsilon} L^0_1(B), \quad \text{in distribution},$$

by an easy scaling argument (use for instance the approximations of the previous section). Also $\mathbb{P}(L^0_1(B) > 0) > 0$ since $\mathbb{E}[L^0_1(B)] = \mathbb{E}[|B_1|]$ by Tanaka’s formula. An application of Blumenthal’s zero-one law to the event

$$A := \bigcap_{n=1}^\infty \{L^{0}_{2^{-n}}(B) > 0\} = \lim_{n \to \infty} \uparrow \{L^{0}_{2^{-n}}(B) > 0\}$$

completes the proof.

Theorem 9.12 remains true with a similar proof for an arbitrary (possibly random) initial value B_0.
to prove that, if B' is a 1-dim Brownian motion started from a, we have $L^a_\epsilon(B') > 0$, for every $\epsilon > 0$, a.s. Clearly we can take $a = 0$. We then observe that we have

$$L^0_\epsilon(B) = \sqrt{\epsilon} L^0_1(B), \quad \text{in distribution,}$$

by an easy scaling argument (use for instance the approximations of the previous section). Also $\mathbb{P}(L^0_1(B) > 0) > 0$ since $\mathbb{E}[L^0_1(B)] = \mathbb{E}[|B_1|]$ by Tanaka's formula. An application of Blumenthal's zero-one law to the event

$$A := \cap_1^\infty \{ L^0_{2^{-n}}(B) > 0 \} = \lim_{n \to \infty} \uparrow \{ L^0_{2^{-n}}(B) > 0 \}$$

completes the proof.

Theorem 9.12 remains true with a similar proof for an arbitrary (possibly random) initial value B_0.
We now turn to distributional properties of local times of Brownian motion.

Proposition 9.13

(i) Let $a \in \mathbb{R} \setminus \{0\}$ and $T_a = \inf\{t \geq 0 : B_t = a\}$. Then $L_{T_a}^0(B)$ has an exponential distribution with mean $2|a|$.

(ii) Let $a > 0$ and $U_a = \inf\{|B_t| = a\}$. Then $L_{U_a}^0(B)$ has an exponential distribution with mean a.
We now turn to distributional properties of local times of Brownian motion.

Proposition 9.13

(i) Let $a \in \mathbb{R} \setminus \{0\}$ and $T_a = \inf \{ t \geq 0 : B_t = a \}$. Then $L_{T_a}^0(B)$ has an exponential distribution with mean $2|a|$.

(ii) Let $a > 0$ and $U_a = \inf \{|B_t| = a\}$. Then $L_{U_a}^0(B)$ has an exponential distribution with mean a.
Proof of Proposition 9.13

(i) By simple scaling and symmetry arguments, it is enough to consider the case $a = 1$. We then observe that $L^0_\infty(B) = \infty$ a.s. Indeed, the scaling argument of the preceding proof shows that $L^0_\infty(B)$ has the same distribution as $\lambda L^0_\infty(B)$, for any $\lambda > 0$, and we have also seen that $L^0_\infty(B) > 0$ a.s. Fix $s > 0$ and define

$$\tau = \inf\{t \geq 0 : L^0_t(B) \geq s\},$$

so that τ is a stopping time of the filtration (\mathcal{F}_t). Furthermore, $B_\tau = 0$ by the support property of local time. By the strong Markov property,

$$B'_t := B_{\tau+t}$$

is a Brownian motion started from 0, which is also independent of \mathcal{F}_τ. Proposition 9.9 gives, for every $t \geq 0$,

$$L^0_t(B') = L^0_{\tau+t}(B) - s.$$
Proof of Proposition 9.13 (cont)

On the event \(\{L^0_{T_1}(B) \geq s\} = \{\tau \leq T_1\} \), we thus have

\[
L^0_{T_1}(B) - s = L^0_{T_1 - \tau}(B') = L^0_{T'_1}(B'),
\]

where \(T'_1 = \inf\{t \geq 0 : B'_t = 1\} \). Since the event \(\{\tau \leq T_1\} \) is \(\mathcal{F}_\tau \)-measurable and \(B' \) is independent of \(\mathcal{F}_\tau \), we get that the conditional distribution of \(L^0_{T_1}(B) - s \) knowing that \(L^0_{T_1}(B) \geq s \) is the same as the unconditional distribution of \(L^0_{T_1}(B) \). This implies that the distribution of \(L^0_{T_1}(B) \) is exponential.

Finally, Tanaka’s formula shows that \(\frac{1}{2} \mathbb{E}[L^0_{t \wedge T_1}(B)] = \mathbb{E}[(B_{t \wedge T_1})^+] \). As \(t \to \infty \), \(\mathbb{E}[L^0_{t \wedge T_1}(B)] \) converges to \(\mathbb{E}[L^0_{T_1}(B)] \) by monotone convergence and \(\mathbb{E}[(B_{t \wedge T_1})^+] \) converges to \(\mathbb{E}[(B_{T_1})^+] \) by dominated convergence, since \(0 \leq (B_{t \wedge T_1})^+ \leq 1 \). This shows that \(\mathbb{E}[L^0_{T_1}(B)] = 2 \), as desired.
Proof of Proposition 9.13 (cont)

(ii) The argument is exactly similar. We now use Tanaka’s formula for absolute value to verify that $\mathbb{E}[L^0_{U_a}(B)] = a$.

Remark

One can give an alternative proof of the proposition using stochastic calculus. To get (ii), for instance, use Ito’s formula to verify that, for every $\lambda > 0$,

$$(1 + \lambda|B_t|) \exp(-\lambda L^0_t(B))$$

is a continuous local martingale, which is bounded on $[0, U_a]$. An application of the optional stopping theorem then shows that $\mathbb{E}[\exp(-\lambda L^0_t(B))] = (1 + \lambda a)^{-1}$.

For every $t \geq 0$, we define

$$S_t := \sup_{s \leq t} B_s, \quad l_t := \inf_{s \leq t} B_s.$$
Proof of Proposition 9.13 (cont)

(ii) The argument is exactly similar. We now use Tanaka's formula for absolute value to verify that $\mathbb{E}[L_{U_a}^0(B)] = a$.

Remark

One can give an alternative proof of the proposition using stochastic calculus. To get (ii), for instance, use Ito's formula to verify that, for every $\lambda > 0$,

$$(1 + \lambda |B_t|) \exp(-\lambda L_t^0(B))$$

is a continuous local martingale, which is bounded on $[0, U_a]$. An application of the optional stopping theorem then shows that $\mathbb{E}[\exp(-\lambda L_t^0(B))] = (1 + \lambda a)^{-1}$.

For every $t \geq 0$, we define

$$S_t := \sup_{s \leq t} B_s, \quad I_t := \inf_{s \leq t} B_s.$$
Theorem 9.14 (Lévy)

The two processes \((S_t, S_t - B_t)_{t \geq 0}\) and \((L^0_t(B), |B_t|)_{t \geq 0}\) have the same distribution.

Remark

By an obvious symmetry argument, the pair \((-I_t, B_t - I_t)_{t \geq 0}\) also has the same distribution as \((S_t, S_t - B_t)_{t \geq 0}\).

Proof of Theorem 9.14

By Tanaka’s formula, for every \(t \geq 0\),

\[
|B_t| = -\beta_t + L^0_t(B),
\]

where

\[
\beta_t = -\int_0^t \text{sgn}(B_s) dB_s.
\]
Theorem 9.14 (Lévy)

The two processes \((S_t, S_t - B_t)_{t \geq 0}\) and \((L^0_t(B), |B_t|)_{t \geq 0}\) have the same distribution.

Remark

By an obvious symmetry argument, the pair \((-l_t, B_t - l_t)_{t \geq 0}\) also has the same distribution as \((S_t, S_t - B_t)_{t \geq 0}\).

Proof of Theorem 9.14

By Tanaka’s formula, for every \(t \geq 0\),

\[
|B_t| = -\beta_t + L^0_t(B),
\]

where

\[
\beta_t = -\int_0^t \text{sgn}(B_s) dB_s.
\]
Theorem 9.14 (Lévy)

The two processes \((S_t, S_t - B_t)_{t \geq 0}\) and \((L_t^0(B), |B_t|)_{t \geq 0}\) have the same distribution.

Remark

By an obvious symmetry argument, the pair \((-I_t, B_t - I_t)_{t \geq 0}\) also has the same distribution as \((S_t, S_t - B_t)_{t \geq 0}\).

Proof of Theorem 9.14

By Tanaka’s formula, for every \(t \geq 0\),

\[
|B_t| = -\beta_t + L_t^0(B),
\]

where

\[
\beta_t = -\int_0^t \text{sgn}(B_s) dB_s.
\]
Proof of Theorem 9.14 (cont)

Since $\langle \beta, \beta \rangle_t = t$, Theorem 5.12 ensures that β is a 1-dim Brownian motion started from 0. We then claim that, for every $t \geq 0$,

$$L^0_t(B) = \sup\{\beta_s : s \leq t\}.$$

The fact that $L^0_t(B) = \sup\{\beta_s : s \leq t\}$ is immediate since (2) shows that $L^0_t(B) \geq L^0_s(B) \geq \beta_s$, for every $s \in [0, t]$. To get the reverse inequality, write γ_t for the last zero of B before time t. By the support property of local time, $L^0_t(B) = L^0_{\gamma_t}(B)$ and using (2),

$$L^0_{\gamma_t}(B) = \beta_{\gamma_t} \leq \sup\{\beta_s : s \leq t\}.$$

We have thus proved a.s.

$$(L^0_t(B), |B_t|)_{t \geq 0} = (\sup\{\beta_s : s \leq t\}, \sup\{\beta_s : s \leq t\} - \beta_t)_{t \geq 0},$$

and since $(\beta_s)_{s \geq 0}$ and $(B_s)_{s \geq 0}$ have the same distribution, the pair in the right-hand side has the same distribution as $(S_t, S_t - B_t)_{t \geq 0}$.
Theorem 9.14 has several interesting consequences. For every $t \geq 0$, S_t has the same law as $|B_t|$ (Theorem 2.21), and thus the same holds for $L_0^t(B)$. From the explicit formula (2.2) for the density of (S_t, B_t), we also get the density of the pair $(L_0^t(B), B_t)$.

For every $s \geq 0$, define

$$\tau_s := \inf\{ t \geq 0 : L_0^t(B) > s \}.$$

The process $(\tau_s)_{s \geq 0}$ is called the inverse local time (at 0) of the Brownian motion B. By construction, $(\tau_s)_{s \geq 0}$ has cadlag increasing sample paths. From L’evy Theorem 9.14, one gets that

$$(\tau_s)_{s \geq 0} = (\tilde{T}_s)_{s \geq 0}, \quad \text{in distribution},$$

where, for every $s \geq 0$, $\tilde{T}_s = \inf\{ t \geq 0 : B_t > s \}$.
Theorem 9.14 has several interesting consequences. For every $t \geq 0$, S_t has the same law as $|B_t|$ (Theorem 2.21), and thus the same holds for $L^0_t(B)$. From the explicit formula (2.2) for the density of (S_t, B_t), we also get the density of the pair $(L^0_t(B), B_t)$.

For every $s \geq 0$, define

$$\tau_s := \inf\{t \geq 0 : L^0_t(B) > s\}.$$

The process $(\tau_s)_{s \geq 0}$ is called the inverse local time (at 0) of the Brownian motion B. By construction, $(\tau_s)_{s \geq 0}$ has cadlag increasing sample paths. From L’evy Theorem 9.14, one gets that

$$(\tau_s)_{s \geq 0} = (\tilde{T}_s)_{s \geq 0}, \quad \text{in distribution},$$

where, for every $s \geq 0$, $\tilde{T}_s = \inf\{t \geq 0 : B_t > s\}$.
The same application of the strong Markov property as in the proof of Proposition 9.13 shows that \((\tau_s)_{s \geq 0}\) has stationary independent increments. Furthermore, using the invariance of Brownian motion under scaling, we have for every \(\lambda > 0\),

\[
(\tau_{\lambda s})_{s \geq 0} = (\lambda^2 \tau_s)_{s \geq 0}, \quad \text{in distribution.}
\]

The preceding properties can be summarized by saying that \((\tau_s)_{s \geq 0}\) is a stable subordinator with index 1/2 (a subordinator is a Lévy process with non-decreasing sample paths).

The interest of considering the process \((\tau_s)_{s \geq 0}\) comes in part from the following proposition.
The same application of the strong Markov property as in the proof of Proposition 9.13 shows that \((\tau_s)_{s \geq 0}\) has stationary independent increments. Furthermore, using the invariance of Brownian motion under scaling, we have for every \(\lambda > 0\),

\[
(\tau_{\lambda s})_{s \geq 0} = (\lambda^2 \tau_s)_{s \geq 0}, \quad \text{in distribution.}
\]

The preceding properties can be summarized by saying that \((\tau_s)_{s \geq 0}\) is a stable subordinator with index 1/2 (a subordinator is a Lévy process with non-decreasing sample paths).

The interest of considering the process \((\tau_s)_{s \geq 0}\) comes in part from the following proposition.
Proposition 9.15

We have a.s.

\[\{ t \geq 0 : B_t = 0 \} = \{ \tau_s : s \geq 0 \} \cup \{ \tau_{s^-} : s \in D \}, \]

where \(D \) is the countable set of jump times of \((\tau_s)_{s \geq 0}\).

Proof

We know from (1) that a.s.

\[\text{supp}(d_t L_0^0(B)) \subset \{ t \geq 0 : B_t = 0 \}. \]

It follows that any time \(t \) of the form \(t = \tau_s \) or \(t = \tau_{s^-} \) must belong to the zero set of \(B \). Conversely, recalling that (1) is an a.s. equality for \(a = 0 \), we also get that, a.s. for every \(t \) such that \(B_t = 0 \), we have either \(L_{t+\epsilon}^0 > L_t^0(B) \) for every \(\epsilon > 0 \), or, if \(t > 0 \), \(L_{t-\epsilon}^0 < L_t^0(B) \) for every \(\epsilon > 0 \) with \(\epsilon < t \) (or both simultaneously), which implies that we have \(t = \tau_{L_t^0(B)} \) or \(t = \tau_{L_t^0(B)-} \).
Proposition 9.15

We have a.s.

\[\{ t \geq 0 : B_t = 0 \} = \{ \tau_s : s \geq 0 \} \cup \{ \tau_{s-} : s \in D \}, \]

where D is the countable set of jump times of $(\tau_s)_{s \geq 0}$.

Proof

We know from (1) that a.s.

\[\text{supp}(d_t L_t^0(B)) \subset \{ t \geq 0 : B_t = 0 \}. \]

It follows that any time t of the form $t = \tau_s$ or $t = \tau_{s-}$ must belong to the zero set of B. Conversely, recalling that (1) is an a.s. equality for $a = 0$, we also get that, a.s. for every t such that $B_t = 0$, we have either $L_{t+\epsilon}^0 > L_t^0(B)$ for every $\epsilon > 0$, or, if $t > 0$, $L_{t-\epsilon}^0 < L_t^0(B)$ for every $\epsilon > 0$ with $\epsilon < t$ (or both simultaneously), which implies that we have $t = \tau_{L_t^0(B)}$ or $t = \tau_{L_t^0(B)-}$.
As a consequence of Proposition 9.15, the connected components of the complement of the zero set \(\{ t \geq 0 : B_t = 0 \} \) are exactly the intervals \((\tau_{s-}, \tau_s) \) for \(s \in D \). These connected components are called the excursion intervals (away from 0). For every \(s \in D \), the associated excursion is defined by

\[
e_s(t) := B_{(\tau_{s-} + t) \wedge \tau_s}, \quad t \geq 0.
\]

The goal of excursion theory is to describe the distribution of the excursion process, that is, of the collection \((e_s)_{s \in D} \). This theory is very useful.