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the course Moodle page. Make sure that your HW is uploaded
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In this chapter, we study stochastic differential equations. The goal of
stochastic differential equations is to provide a model for a differential
equation perturbed by a random noise. Consider an ordinary
differential equation of the form

dyt = b(yt )dt .

Such an equation is used to model the evolution of a physical system.

If we take random perturbations of the system into account, we add a
noise term, which is typically of the form σdBt , where B denotes a
Brownian motion, and σ is a constant corresponding to the intensity
of the noise. Note that the use of Brownian motion here is justified by
its property of independence of increments, corresponding to the fact
that the random perturbations affecting disjoint time intervals are
assumed to be independent.
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In this way, we arrive at a stochastic differential equation of the form

dyt = b(yt )dt + σdBt ,

or in integral form,

yt = y0 +

∫ t

0
b(ys)ds + σBt .

We generalize the preceding equation by allowing σ to depend on the
state of the system at time t :

dyt = b(yt )dt + σ(yt )dBt ,

or, in integral form,

yt = y0 +

∫ t

0
b(ys)ds +

∫ t

0
σ(ys)dBs.
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We can still generalize the preceding equation by allowing σ and b to
depend on the time parameter t . This leads to the following definition.

Definition 8.1
Let d and m be positive integers, and let σ and b be bounded Borel
functions defined on R+ × Rd and taking values in Md×m(R) and Rd

respectively, where Md×m(R) is the set of all d ×m matrices with real
entries. We write σ = (σij )1≤i≤d,1≤j≤m and b = (bi )1≤i≤d .

A solution of the stochastic differential equation

dXt = σ(t ,Xt )dBt + b(t ,Xt )dt , E(σ, b)

consists of:
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Definition 8.1 (cont)

a filtered probability space (Ω,F , (Ft )t∈[0,∞],P) (where the
filtration is always assumed to be complete);
an m-dimensional (Ft )-Brownian motion B = (B1, . . . ,Bm)
started from 0;
an (Ft )-adapted process X = (X 1, . . . ,X d ) taking values in Rd ,
with continuous sample paths, such that

Xt = X0 +

∫ t

0
σ(s,Xs)dBs +

∫ t

0
b(s,Xs)ds

meaning that, for every i ∈ {1, . . . ,d},

X i
t = X i

0 +
m∑

j=1

∫ t

0
σij (s,Xs)dBj

s +

∫ t

0
bi (s,Xs)ds.

If additionally X0 = x ∈ Rd , we say that X is a solution of Ex (σ, b).
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Note that, when we speak about a solution of E(σ, b), we do not fix a
priori the filtered probability space and the Brownian motion B. When
we fix these objects, we will say so explicitly.

There are several notions of existence and uniqueness for stochastic
differential equations.

Definition 8.2
For the equation E(σ, b), we say that there is

weak existence if, for every x ∈ Rd , there exists a solution of
Ex (σ, b);
weak existence and weak uniqueness if in addition, for every
x ∈ Rd , all solutions of Ex (σ, b) have the same law;
pathwise uniqueness if, whenever the filtered probability space
(Ω,F , (Ft )t∈[0,∞],P) and the (Ft )-Brownian motion B are fixed,
two solution X and X ′ such that X0 = X ′0 a.s. are
indistinguishable.
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Definition 8.2 (cont)

Furthermore, we say that a solution X of Ex (σ, b) is a strong solution
if X is adapted with respect to the completed canonical filtration of B.

Remark
It may happen that weak existence and weak uniqueness hold but
pathwise uniqueness fails. For a simple example, consider a 1-dim
Brownian motion β started from β0 = y , and set

Bt =

∫ t

0
sgn(βs)dβs,

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x ≤ 0. Then, one
immediately gets from the “associativity” of stochastic integrals that

βt = y +

∫ t

0
sgn(βs)dBs.
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Moreover, B is a continuous martingale with quadratic variation
〈B,B〉t = t , and Theorem 5.12 shows that B is a Brownian motion
started from 0. We thus see that β solves the stochastic differential
equation

dXt = sgn(Xt )dBt , X0 = y ,

and it follows that weak existence holds for this equation. Theorem
5.12 again shows that any other solution of this equation must be a
Brownian motion, which gives weak uniqueness. On the other hand,
pathwise uniqueness fails. In fact, taking y = 0 in the construction,
one easily sees that both β and −β solve the preceding stochastic
differential equation with the same Brownian motion B and initial
value 0 (note that

∫ t
0 1{βs=0}ds = 0, which implies

∫ t
0 1{βs=0}dBs = 0).

One can also show that β is not a strong solution: One verifies that
the canonical filtration of B coincides with the canonical filtration of
|β|, which is strictly smaller than that of β.
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The next theorem links the different notions of existence and
uniqueness.

Theorem (Yamada-Watanabe)

If both weak existence and pathwise uniqueness hold, then weak
uniqueness also holds. Moreover, for any choice of the filtered
probability space (Ω,F , (Ft )t∈[0,∞],P) and of the (Ft )-Brownian
motion B, there exists, for every x ∈ Rd , a (unique) strong solution of
Ex (σ, b).

The proof of this theorem is pretty complicated. See the book by
Karatzas and Shreve for a proof.
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In this section, we work under the following assumptions.

Assumptions

The functions σ and b are continuous on R+ ×Rd and Lipschitz in the
variable x : There exists a constant K such that, for every
t ≥ 0, x , y ∈ Rd ,

|σ(t , x)− σ(t , y)| ≤ K |x − y |;
|b(t , x)− b(t , y)| ≤ K |x − y |.

Theorem 8.3
Under the preceding assumptions, pathwise uniqueness holds for
E(σ, b), and, for every choice of the filtered probability space
(Ω,F , (Ft )t∈[0,∞],P) and of the (Ft )-Brownian motion B, for every
x ∈ Rd , there exists a (unique) strong solution of Ex (σ, b).
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The theorem implies in particular that weak existence holds for
E(σ, b). Weak uniqueness will follow from the next theorem (it can
also be deduced from pathwise uniqueness using the
Yamada-Watanabe theorem).

Remark
One can “localize” the Lipschitz assumption on σ and b, meaning that
the constant K may depend on the compact set on which the
parameters t and x ; y are considered. In that case, it is, however,
necessary to keep a condition of linear growth of the form

|σ(t , x)| ≤ K (1 + |x |), |b(t , x)| ≤ K (1 + |x |).

This kind of condition, which avoids the blow-up of solutions, already
appears in ordinary differential equations.
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Proof of Proposition 8.3

We we consider only the case d = m = 1. The general case follows
the same argument, only the notations are more complicated. Let us
start by proving pathwise uniqueness. We consider (on the same
filtered probability space, with the same Brownian motion B) two
solutions X and X ′ such that X0 = X ′0. Fix M > 0 and set

τ = inf{t ≥ 0 : |Xt | ≥ M or |X ′t | ≥ M}.

Then, for every t ≥ 0,

Xt∧τ = X0 +

∫ t∧τ

0
σ(s,Xs)dBs +

∫ t∧τ

0
b(s,Xs)ds

and an analogous equation holds for X ′t∧τ . Fix a constant T > 0. By
considering the difference between the two equations, we get, for
t ∈ [0,T ],
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Proof of Proposition 8.3 (cont)

E[(Xt∧τ − X ′t∧τ )2]

≤ 2E

(∫ t∧τ

0
(σ(s,Xs)− σ(s,X ′s))dBs

)2


+ 2E

(∫ t∧τ

0
(b(s,Xs)− b(s,X ′s))ds

)2


≤ 2E

[∫ t∧τ

0
(σ(s,Xs)− σ(s,X ′s))2ds

]

+ 2TE

[∫ t∧τ

0
(b(s,Xs)− b(s,X ′s))2ds

]

≤ 2K 2(1 + T )E

[∫ t∧τ

0
(Xs − X ′s)2ds

]
≤ 2K 2(1 + T )E

[∫ t

0
(Xs∧τ − X ′s∧τ )2ds

]
.
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Proof of Proposition 8.3 (cont)

Hence the function h(t) = E[(Xt∧τ − X ′t∧τ )2] satisfies

h(t) ≤ C
∫ t

0
h(s)ds, t ∈ [0,T ],

where C = 2K 2(1 + T ). Now we are going to use

Lemma 8.4 (Gronwall’s lemma)

Let T > 0 and let g be a non-negative bounded measurable function
on [0,T ]. Assume that there exist two constants a ≥ 0 and b ≥ 0
such that, for every t ∈ [0,T ],

g(t) ≤ a + b
∫ t

0
g(s)ds,

Then, we also have, for every t ∈ [0,T ],

g(t) ≤ aebt .
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Proof of Theorem 8.3 (cont)

The function h is bounded above by 4M2 and the assumption of the
lemma holds with a = 0 and b = C. We thus get h = 0, so that
Xt∧τ = X ′t∧τ . By letting M tend to∞, we get Xt = X ′t , which
completes the proof of pathwise uniqueness.

For the second assertion, we construct a solution using Picard’s
approximation method. We will deal with this next time.
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