Math 562 Fall 2020

Renming Song

University of Illinois at Urbana-Champaign

October 19, 2020

Outline

Outline

1 5.3 A Few Consequences of Ito's Formula

Recall that for any continuous local martingale M, we define

$$M_t^* = \sup_{s \le t} |M_s|, \quad t \ge 0.$$

Theorem 5.16 (Burkholder-Davis-Gundy inequalities)

For every p > 0, there exist two constants c_p , $C_p > 0$ depending only on p such that, for every continuous local martingale M with $M_0 = 0$, and every stopping time T,

$$c_p \mathbb{E}[\langle M, M \rangle_T^{p/2}] \le \mathbb{E}[(M_T^*)^p] \le C_p \mathbb{E}[\langle M, M \rangle_T^{p/2}]$$

Remark

It may happen that both $\mathbb{E}[\langle M, M \rangle_T^{\rho/2}]$ and $\mathbb{E}[(M_T^*)^{\rho}]$ are infinite. The theorem says that these quantities are either both finite (then the stated bounds hold) or both infinite.

Recall that for any continuous local martingale M, we define

$$M_t^* = \sup_{s \le t} |M_s|, \quad t \ge 0.$$

Theorem 5.16 (Burkholder-Davis-Gundy inequalities)

For every p>0, there exist two constants c_p , $C_p>0$ depending only on p such that, for every continuous local martingale M with $M_0=0$, and every stopping time \mathcal{T} ,

$$c_{\rho}\mathbb{E}[\langle M,M \rangle_{T}^{
ho/2}] \leq \mathbb{E}[(M_{T}^{*})^{
ho}] \leq C_{
ho}\mathbb{E}[\langle M,M \rangle_{T}^{
ho/2}].$$

Remark

It may happen that both $\mathbb{E}[\langle M, M \rangle_T^{\rho/2}]$ and $\mathbb{E}[(M_T^*)^{\rho}]$ are infinite. The theorem says that these quantities are either both finite (then the stated bounds hold) or both infinite.

Recall that for any continuous local martingale M, we define

$$M_t^* = \sup_{s \le t} |M_s|, \quad t \ge 0.$$

Theorem 5.16 (Burkholder-Davis-Gundy inequalities)

For every p>0, there exist two constants c_p , $C_p>0$ depending only on p such that, for every continuous local martingale M with $M_0=0$, and every stopping time T,

$$c_{\rho}\mathbb{E}[\langle M,M \rangle_{T}^{\rho/2}] \leq \mathbb{E}[(M_{T}^{*})^{\rho}] \leq C_{\rho}\mathbb{E}[\langle M,M \rangle_{T}^{\rho/2}].$$

Remark

It may happen that both $\mathbb{E}[\langle M, M \rangle_T^{p/2}]$ and $\mathbb{E}[(M_T^*)^p]$ are infinite. The theorem says that these quantities are either both finite (then the stated bounds hold) or both infinite.

Proof of Theorem 5.16

Replacing M by the stopping martingale M^T , we see that it is enough to treat the special case $T=\infty$. We then observe that it suffices to consider the case when M is bounded: Assuming that the bounded case has been treated, we can replace M by M^{T_n} , where $T_n=\inf\{t\geq 0: |M_t|=n\}$, and we get the general case by letting $n\to\infty$.

(1) $p \ge 2$, right-hand inequality: Apply Ito's formula to the function $|x|^p$:

$$|M_t|^p = \int_0^t p|M_s|^{p-1} \operatorname{sgn}(M_s) dM_s + \frac{1}{2} \int_0^t p(p-1)|M_s|^{p-2} d\langle M, M \rangle_s$$

Since M is bounded, the process

$$\int_0^t p|M_s|^{p-1}\operatorname{sgn}(M_s)dM_s$$

is a martingale in \mathbb{H}^2 . We therefore get

Proof of Theorem 5.16

Replacing M by the stopping martingale M^T , we see that it is enough to treat the special case $T=\infty$. We then observe that it suffices to consider the case when M is bounded: Assuming that the bounded case has been treated, we can replace M by M^{T_n} , where $T_n=\inf\{t\geq 0: |M_t|=n\}$, and we get the general case by letting $n\to\infty$.

(1) $p \ge 2$, right-hand inequality: Apply Ito's formula to the function $|x|^p$:

$$|M_t|^p = \int_0^t p |M_s|^{p-1} \mathrm{sgn}(M_s) dM_s + \frac{1}{2} \int_0^t p(p-1) |M_s|^{p-2} d\langle M, M \rangle_s.$$

Since M is bounded, the process

$$\int_0^t p|M_s|^{p-1}\operatorname{sgn}(M_s)dM_s$$

is a martingale in \mathbb{H}^2 . We therefore get

$$\mathbb{E}[|M_t|^p] = \frac{p(p-1)}{2} \mathbb{E}\left[\int_0^t |M_s|^{p-2} d\langle M, M \rangle_s\right]$$

$$\leq \frac{p(p-1)}{2} \mathbb{E}[(M_t^*)^{p-2} \langle M, M \rangle_t]$$

$$\leq \frac{p(p-1)}{2} (\mathbb{E}[(M_t^*)^p])^{(p-2)/2} (\mathbb{E}[\langle M, M \rangle_t^{p/2}])^{2/p}$$

by Hölder's inequality. On the other hand, by Doob's L^p inequality,

$$\mathbb{E}[(M_t^*)^p] \leq (\frac{p}{p-1})^p \mathbb{E}[|M_t|^p]$$

and combining this bound with the previous one, we arrive at

$$\mathbb{E}[(M_t^*)^p] \leq \left(\left(\frac{p}{p-1} \right)^p \frac{p(p-1)}{2} \right)^{p/2} \mathbb{E}[\langle M, M \rangle_t^{p/2}].$$

It now suffices to let t tend to ∞ .

(2) $p \ge 4$, left-hand inequality: For any $q \ge 2$, there exists $a_q > 0$ such that

$$|x+y|^q \leq a_q(|x|^q+|y|^q), \quad x,y \in \mathbb{R}.$$

Since $M_t^2 = 2 \int_0^t M_s dM_s + \langle M, M \rangle_t$, we have

$$\mathbb{E}[\langle M, M \rangle_{\infty}^{p/2}] \leq a_{p} \left(\mathbb{E}[(M_{\infty}^{*})^{p}] + \mathbb{E}[\left| \int_{0}^{\infty} M_{s} dM_{s} \right|^{p/2}] \right).$$

Applying (1) to $\int_0^{\cdot} M_s dM_s$, we get

$$\begin{split} \mathbb{E}[\langle M, M \rangle_{\infty}^{p/2}] &\leq a_{p} \left(\mathbb{E}[(M_{\infty}^{*})^{p}] + \mathbb{E}\left[\left(\int_{0}^{\infty} M_{s}^{2} d\langle M, M \rangle_{s} \right)^{p/4} \right] \right) \\ &\leq a_{p} \left(\mathbb{E}[(M_{\infty}^{*})^{p}] + \left(\mathbb{E}[(M_{\infty}^{*})^{p}] \mathbb{E}[\langle M, M \rangle_{\infty}^{p/2}] \right)^{1/2} \right). \end{split}$$

If we let

$$x = \mathbb{E}[\langle M, M \rangle_{\infty}^{p/2}]^{1/2}, \quad y = \mathbb{E}[(M_{\infty}^*)^p]^{1/2},$$

the above inequality reads

$$x^2-a_pxy-a_py^2\leq 0,$$

which forces x to be less than or equal to the positive root of $x^2 - a_p xy - a_p y^2 = 0$, which is of the form $a_p y$. This finishes the proof of this part.

(3) p < 2, right-hand inequality: Since $M \in \mathbb{H}^2$, $M^2 - \langle M, M \rangle$ is a uniformly integrable martingale and we have, for every stopping time T,

$$\mathbb{E}[M_T^2] = \mathbb{E}[\langle M, M \rangle_T].$$

Let x > 0 and consider the stopping time $T_x = \inf\{t \ge 0 : M_t^2 \ge x\}$.

Then, if *T* is any bounded stopping time,

$$\begin{split} & \mathbb{P}((M_T^*)^2 \geq x) = \mathbb{P}(T_X \leq T) = \mathbb{P}((M_{T_X \wedge T}^*)^2 \geq x) \\ & \leq \frac{1}{Y} \mathbb{E}[(M_{T_X \wedge T}^*)^2] = \frac{1}{Y} \mathbb{E}[\langle M, M \rangle_{T_X \wedge T}] \leq \frac{1}{Y} \mathbb{E}[\langle M, M \rangle_T]. \end{split}$$

Next consider the stopping time $S_x = \inf\{t \ge 0 : \langle M, M \rangle_t \ge x\}$. Note

$$\{(M_t^*)^2 \ge x\} \subset \{(M_{S_x \wedge t}^*)^2 \ge x\} \cup \{S_x \le t\}, \quad t \ge 0.$$

Using the preceding bound with $T = S_x \wedge t$, we get

$$\mathbb{P}((M_t^*)^2 \ge x) \le P((M_{S_x \wedge t}^*)^2 \ge x) + P(S_x \le t)$$

$$\le \frac{1}{x} E[\langle M, M \rangle_{S_x \wedge t}] + P(\langle M, M \rangle_t \ge x)$$

$$= \frac{1}{x} E[\langle M, M \rangle_t \wedge x] + P(\langle M, M \rangle_t \ge x)$$

$$= \frac{1}{x} E[\langle M, M \rangle_t 1_{\langle M, M \rangle_t < x}] + 2P(\langle M, M \rangle_t \ge x).$$

To complete the proof, set $q = p/2 \in (0,1)$ and integrate each side of the last bound with respect to the measure $qx^{q-1}dx$. We have first

$$\int_0^\infty \mathbb{P}((M_t^*)^2 \ge x) q x^{q-1} dx = \mathbb{E}[\int_0^{(M_t^*)^2} q x^{q-1} dx] = \mathbb{E}[(M_t^*)^{2q}]$$

and similarly

$$\int_0^\infty P(\langle M, M \rangle_t \ge x) q x^{q-1} dx = E[\langle M, M \rangle_t^q].$$

Furthermore,

$$\begin{split} &\int_0^\infty \frac{1}{x} \mathbb{E}[\langle M, M \rangle_t \mathbf{1}_{\langle M, M \rangle_{< X}}] x^{q-1} dx \\ = & \mathbb{E}[\langle M, M \rangle_t \int_{\langle M, M \rangle_t}^\infty q x^{q-2} dx] = \frac{q}{1-q} \mathbb{E}[\langle M, M \rangle_t^q]. \end{split}$$

Summarizing, we have

$$\mathbb{E}[(M_t^*)^{2q}] \leq \left(2 + \frac{q}{1-q}\right) \mathbb{E}[\langle M, M \rangle_t^q].$$

Letting $t \uparrow \infty$, we get the desired result in this step.

Definition

A positive, adapted right-continuous process $X=(X_t)_{t\geq 0}$ is said to be dominated by an increasing process $A=(A_t)_{t\geq 0}$, if

$$\mathbb{E}[X_T|\mathcal{F}_0] \leq \mathbb{E}[A_T|\mathcal{F}_0]$$

for every bounded stopping time T. Here A may not be continuous and A_0 may not be zero (different from the usual meaning of increasing processes in the textbook).

l emma

If X is a positive adapted right-continuous process dominated by an increasing process A and A is continuous, then for any x, y > 0,

$$\mathbb{P}(X_{\infty}^* > x, A_{\infty} \le y) \le \frac{1}{x} \mathbb{E}[A_{\infty} \wedge y]$$

Definition

A positive, adapted right-continuous process $X=(X_t)_{t\geq 0}$ is said to be dominated by an increasing process $A=(A_t)_{t\geq 0}$, if

$$\mathbb{E}[X_T|\mathcal{F}_0] \leq \mathbb{E}[A_T|\mathcal{F}_0]$$

for every bounded stopping time T. Here A may not be continuous and A_0 may not be zero (different from the usual meaning of increasing processes in the textbook).

Lemma

If X is a positive adapted right-continuous process dominated by an increasing process A and A is continuous, then for any x, y > 0,

$$\mathbb{P}(X_{\infty}^* > x, A_{\infty} \leq y) \leq \frac{1}{x} \mathbb{E}[A_{\infty} \wedge y].$$

Proof

It suffices to prove the inequality in the case where $\mathbb{P}(A_0 \leq y) > 0$ and, in fact, even $P(A_0 \leq y) = 1$, which may be achieved by replacing \mathbb{P} by $\mathbb{P}^*(\cdot) = P(\cdot|A_0 \leq y)$ under which the domination relation is still satisfied.

Moreover, by Fatou's lemma, it is enough to prove that

$$\mathbb{P}(X_n^* > x, A_n \le y) \le \frac{1}{x} \mathbb{E}[A_n \wedge y], \quad n \ge 1.$$

But reasoning on [0,n] amounts to reasoning on $[0,\infty]$ and assuming that the random variable X_{∞} exists and the domination relation is true for all stopping times, whether bounded or not. Define

$$R = \inf\{t \ge 0 : A_t > y\}, \quad S = \inf\{t \ge 0 : X_t > x\}.$$

Proof

$$\{A_{\infty} \leq y\} \subset \{R = \infty\}$$
 and consequently
$$\mathbb{P}(X_{\infty}^* > x, A_{\infty} \leq y) = \mathbb{P}(X_{\infty}^* > x, R + \infty) \\ \leq \mathbb{P}(X_S \geq x, S < \infty, R = \infty) \\ \leq \mathbb{P}(X_{S \wedge R} \geq x) \leq \frac{1}{x} \mathbb{E}[X_{S \wedge R}] \\ \leq \frac{1}{x} \mathbb{E}[A_{S \wedge R}] \leq \frac{1}{x} \mathbb{E}[A_{\infty} \wedge y],$$

the last inequality being satisfied since, thanks to the continuity of A, and $A_0 \le y$ a.s., we have $A_{S \wedge R} \le A_{\infty} \wedge y$.

Proposition

Under the assumptions of the lemma above, for any $k \in (0,1)$,

$$\mathbb{E}[(X_{\infty}^*)^k] \leq \frac{2-k}{1-k}\mathbb{E}[A_{\infty}^k].$$

Proof

Let $F: \mathbb{R}_+ \to \mathbb{R}_+$ be continuous and F(0) = 0. By Fubini and the lemma above,

$$\mathbb{E}[F(X_{\infty}^{*})] = \mathbb{E}\left[\int_{0}^{\infty} 1_{\{X_{\infty}^{*} > x\}} dF(x)\right]$$

$$\leq \int_{0}^{\infty} \left(\mathbb{P}(X_{\infty}^{*} > x, A_{\infty} \leq x) + \mathbb{P}(A_{\infty} > x)\right) dF(x)$$

$$\leq \int_{0}^{\infty} \left(\frac{1}{x} \mathbb{E}[A_{\infty} \wedge x] + \mathbb{P}(A_{\infty} > x)\right) dF(x)$$

$$\leq \int_{0}^{\infty} \left(2\mathbb{P}(A_{\infty} > x) + \frac{1}{x} \mathbb{E}[A_{\infty} 1_{\{A_{\infty} \leq x\}}\right) dF(x)$$

Proposition

Under the assumptions of the lemma above, for any $k \in (0,1)$,

$$\mathbb{E}[(X_{\infty}^*)^k] \leq \frac{2-k}{1-k}\mathbb{E}[A_{\infty}^k].$$

Proof

Let $F: \mathbb{R}_+ \to \mathbb{R}_+$ be continuous and F(0) = 0. By Fubini and the lemma above,

$$\mathbb{E}[F(X_{\infty}^{*})] = \mathbb{E}[\int_{0}^{\infty} 1_{\{X_{\infty}^{*} > x\}} dF(x)]$$

$$\leq \int_{0}^{\infty} (\mathbb{P}(X_{\infty}^{*} > x, A_{\infty} \leq x) + \mathbb{P}(A_{\infty} > x)) dF(x)$$

$$\leq \int_{0}^{\infty} \left(\frac{1}{x} \mathbb{E}[A_{\infty} \wedge x] + \mathbb{P}(A_{\infty} > x)\right) dF(x)$$

$$\leq \int_{0}^{\infty} \left(2\mathbb{P}(A_{\infty} > x) + \frac{1}{x} \mathbb{E}[A_{\infty} 1_{\{A_{\infty} \leq x\}}\right) dF(x)$$

Proof

$$= 2\mathbb{E}[F(A_{\infty})] + \mathbb{E}[A_{\infty} \int_{A_{\infty}}^{\infty} \frac{dF(x)}{x}]$$
$$= \mathbb{E}[\widetilde{F}(A_{\infty})]$$

where $\widetilde{F}(x) = 2F(x) + x \int_{x}^{\infty} \frac{dF(u)}{u}$. Take $F(x) = x^{k}$, we obtain the desired result.

Proof of Theorem 5.16 (cont)

Take $X_t = (M_t^*)^2$ and $A_t = C_2 \langle M, M \rangle_t$ for the right-hand inequality, and $X_t = \langle M, M \rangle_t^2$ and $A_t = \frac{1}{c_4} (M_t^*)^4$ for the left-hand inequality. The necessary domination relations follow from steps (1) and (2).

Proof

$$= 2\mathbb{E}[F(A_{\infty})] + \mathbb{E}[A_{\infty} \int_{A_{\infty}}^{\infty} \frac{dF(x)}{x}]$$
$$= \mathbb{E}[\widetilde{F}(A_{\infty})]$$

where $\widetilde{F}(x) = 2F(x) + x \int_{x}^{\infty} \frac{dF(u)}{u}$. Take $F(x) = x^{k}$, we obtain the desired result.

Proof of Theorem 5.16 (cont)

Take $X_t = (M_t^*)^2$ and $A_t = C_2 \langle M, M \rangle_t$ for the right-hand inequality, and $X_t = \langle M, M \rangle_t^2$ and $A_t = \frac{1}{C_4} (M_t^*)^4$ for the left-hand inequality. The necessary domination relations follow from steps (1) and (2).