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5.3 A Few Consequences of Ito’s Formula

Recall that for any continuous local martingale M, we define

M∗t = sup
s≤t
|Ms|, t ≥ 0.

Theorem 5.16 (Burkholder-Davis-Gundy inequalities)

For every p > 0, there exist two constants cp,Cp > 0 depending only
on p such that, for every continuous local martingale M with M0 = 0,
and every stopping time T ,

cpE[〈M,M〉p/2
T ] ≤ E[(M∗T )p] ≤ CpE[〈M,M〉p/2

T ].

Remark

It may happen that both E[〈M,M〉p/2
T ] and E[(M∗T )p] are infinite. The

theorem says that these quantities are either both finite (then the
stated bounds hold) or both infinite.
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5.3 A Few Consequences of Ito’s Formula

Proof of Theorem 5.16

Replacing M by the stopping martingale MT , we see that it is enough
to treat the special case T =∞. We then observe that it suffices to
consider the case when M is bounded: Assuming that the bounded
case has been treated, we can replace M by MTn , where
Tn = inf{t ≥ 0 : |Mt | = n}, and we get the general case by letting
n→∞.

(1) p ≥ 2, right-hand inequality: Apply Ito’s formula to the function
|x |p:

|Mt |p =

∫ t

0
p|Ms|p−1sgn(Ms)dMs +

1
2

∫ t

0
p(p − 1)|Ms|p−2d〈M,M〉s.

Since M is bounded, the process∫ t

0
p|Ms|p−1sgn(Ms)dMs

is a martingale in H2. We therefore get
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Proof of Theorem 5.16 (cont)

E[|Mt |p] =
p(p − 1)

2
E

[∫ t

0
|Ms|p−2d〈M,M〉s

]

≤ p(p − 1)
2

E[(M∗t )p−2〈M,M〉t ]

≤ p(p − 1)
2

(E[(M∗t )p])(p−2)/2(E[〈M,M〉p/2
t ])2/p

by Hölder’s inequality. On the other hand, by Doob’s Lp inequality,

E[(M∗t )p] ≤ (
p

p − 1
)pE[|Mt |p]

and combining this bound with the previous one, we arrive at

E[(M∗t )p] ≤
(
(

p
p − 1

)p p(p − 1)
2

)p/2

E[〈M,M〉p/2
t ].

It now suffices to let t tend to∞.
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Proof of Theorem 5.16 (cont)

(2) p ≥ 4, left-hand inequality: For any q ≥ 2, there exists aq > 0
such that

|x + y |q ≤ aq(|x |q + |y |q), x , y ∈ R.

Since M2
t = 2

∫ t
0 MsdMs + 〈M,M〉t , we have

E[〈M,M〉p/2
∞ ] ≤ ap

(
E[(M∗∞)p] + E[

∣∣ ∫ ∞
0

MsdMs
∣∣p/2

]

)
.

Applying (1) to
∫ ·

0 MsdMs, we get

E[〈M,M〉p/2
∞ ] ≤ ap

(
E[(M∗∞)p] + E

[(∫ ∞
0

M2
s d〈M,M〉s

)p/4
])

≤ ap

(
E[(M∗∞)p] +

(
E[(M∗∞)p]E[〈M,M〉p/2

∞ ]
)1/2

)
.
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Proof of Theorem 5.16 (cont)

If we let
x = E[〈M,M〉p/2

∞ ]1/2, y = E[(M∗∞)p]1/2,

the above inequality reads

x2 − apxy − apy2 ≤ 0,

which forces x to be less than or equal to the positive root of
x2 − apxy − apy2 = 0, which is of the form apy . This finishes the
proof of this part.

(3) p < 2, right-hand inequality: Since M ∈ H2, M2 − 〈M,M〉 is a
uniformly integrable martingale and we have, for every stopping time
T ,

E[M2
T ] = E[〈M,M〉T ].

Let x > 0 and consider the stopping time Tx = inf{t ≥ 0 : M2
t ≥ x}.



5.3 A Few Consequences of Ito’s Formula

Proof of Theorem 5.16 (cont)

Then, if T is any bounded stopping time,

P((M∗T )2 ≥ x) = P(Tx ≤ T ) = P((M∗Tx∧T )
2 ≥ x)

≤ 1
x
E[(M∗Tx∧T )

2] =
1
x
E[〈M,M〉Tx∧T ] ≤

1
x
E[〈M,M〉T ].

Next consider the stopping time Sx = inf{t ≥ 0 : 〈M,M〉t ≥ x}. Note

{(M∗t )2 ≥ x} ⊂ {(M∗Sx∧t)
2 ≥ x} ∪ {Sx ≤ t}, t ≥ 0.

Using the preceding bound with T = Sx ∧ t , we get

P((M∗t )2 ≥ x) ≤ P((M∗Sx∧t)
2 ≥ x) + P(Sx ≤ t)

≤ 1
x

E [〈M,M〉Sx∧t ] + P(〈M,M〉t ≥ x)

=
1
x

E [〈M,M〉t ∧ x ] + P(〈M,M〉t ≥ x)

=
1
x

E [〈M,M〉t1〈M,M〉t<x ] + 2P(〈M,M〉t ≥ x).
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Proof of Theorem 5.16 (cont)

To complete the proof, set q = p/2 ∈ (0,1) and integrate each side of
the last bound with respect to the measure qxq−1dx . We have first∫ ∞

0
P((M∗t )2 ≥ x)qxq−1dx = E[

∫ (M∗t )2

0
qxq−1dx ] = E[(M∗t )2q]

and similarly ∫ ∞
0

P(〈M,M〉t ≥ x)qxq−1dx = E [〈M,M〉qt ].
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Proof of Theorem 5.16 (cont)

Furthermore,∫ ∞
0

1
x
E[〈M,M〉t1〈M,M〉<x ]xq−1dx

=E[〈M,M〉t
∫ ∞
〈M,M〉t

qxq−2dx ] =
q

1− q
E[〈M,M〉qt ].

Summarizing, we have

E[(M∗t )2q] ≤
(

2 +
q

1− q

)
E[〈M,M〉qt ].

Letting t ↑ ∞, we get the desired result in this step.
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Definition
A positive, adapted right-continuous process X = (Xt)t≥0 is said to be
dominated by an increasing process A = (At)t≥0, if

E[XT |F0] ≤ E[AT |F0]

for every bounded stopping time T . Here A may not be continuous
and A0 may not be zero (different from the usual meaning of
increasing processes in the textbook).

Lemma
If X is a positive adapted right-continuous process dominated by an
increasing process A and A is continuous, then for any x , y > 0,

P(X ∗∞ > x ,A∞ ≤ y) ≤ 1
x
E[A∞ ∧ y ].
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Proof
It suffices to prove the inequality in the case where P(A0 ≤ y) > 0
and, in fact, even P(A0 ≤ y) = 1, which may be achieved by replacing
P by P∗(·) = P(·|A0 ≤ y) under which the domination relation is still
satisfied.

Moreover, by Fatou’s lemma, it is enough to prove that

P(X ∗n > x ,An ≤ y) ≤ 1
x
E[An ∧ y ], n ≥ 1.

But reasoning on [0,n] amounts to reasoning on [0,∞] and assuming
that the random variable X∞ exists and the domination relation is true
for all stopping times, whether bounded or not. Define

R = inf{t ≥ 0 : At > y}, S = inf{t ≥ 0 : Xt > x}.
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Proof
{A∞ ≤ y} ⊂ {R =∞} and consequently

P(X ∗∞ > x ,A∞ ≤ y) = P(X ∗∞ > x ,R +∞)

≤ P(XS ≥ x ,S <∞,R =∞)

≤ P(XS∧R ≥ x) ≤ 1
x
E[XS∧R]

≤ 1
x
E[AS∧R] ≤

1
x
E[A∞ ∧ y ],

the last inequality being satisfied since, thanks to the continuity of A,
and A0 ≤ y a.s., we have AS∧R ≤ A∞ ∧ y .



5.3 A Few Consequences of Ito’s Formula

Proposition

Under the assumptions of the lemma above, for any k ∈ (0,1),

E[(X ∗∞)k ] ≤ 2− k
1− k

E[Ak
∞].

Proof
Let F : R+ → R+ be continuous and F (0) = 0. By Fubini and the
lemma above,

E[F (X ∗∞)] = E[
∫ ∞

0
1{X∗∞>x}dF (x)]

≤
∫ ∞

0
(P(X ∗∞ > x ,A∞ ≤ x) + P(A∞ > x))dF (x)

≤
∫ ∞

0

(
1
x
E[A∞ ∧ x ] + P(A∞ > x)

)
dF (x)

≤
∫ ∞

0

(
2P(A∞ > x) +

1
x
E[A∞1{A∞≤x}

)
dF (x)
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Proof

= 2E[F (A∞)] + E[A∞
∫ ∞

A∞

dF (x)
x

]

= E[F̃ (A∞)]

where F̃ (x) = 2F (x) + x
∫∞

x
dF (u)

u . Take F (x) = xk , we obtain the
desired result.

Proof of Theorem 5.16 (cont)

Take Xt = (M∗t )
2 and At = C2〈M,M〉t for the right-hand inequality, and

Xt = 〈M,M〉2t and At =
1
c4
(M∗t )

4 for the left-hand inequality. The
necessary domination relations follow from steps (1) and (2).
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