Outline

1. General Info
2. 5.2 Ito’s Formula
3. 5.3 A Few Consequences of Ito’s Formula
I posted HW4 in my homepage. HW4 is due 10/16 at noon. I also set up HW4 in the course Moodle page.
Outline

1. General Info
2. 5.2 Ito’s Formula
3. 5.3 A Few Consequences of Ito’s Formula
Theorem 5.10 (Ito’s formula)

Let \(X^1, \ldots, X^p \) be \(p \) continuous semimartingales, and let \(F \) be a twice continuously differentiable real-valued function on \(\mathbb{R}^p \). Then, for every \(t \geq 0 \),

\[
F(X^1_t, \ldots, X^p_t) = F(X^1_0, \ldots, X^p_0) + \sum_{j=1}^{p} \int_0^t \frac{\partial F}{\partial x^j}(X^1_t, \ldots, X^p_t) \, dX^j_s
+ \frac{1}{2} \sum_{j,k=1}^{p} \int_0^t \frac{\partial^2 F}{\partial x^j x^k}(X^1_t, \ldots, X^p_t) \, d\langle X^j, X^k \rangle_s.
\]

Last time, we proved the theorem in the case \(p = 1 \). This time we deal with the general case.
Theorem 5.10 (Ito’s formula)

Let X_1, \ldots, X^p be p continuous semimartingales, and let F be a twice continuously differentiable real-valued function on \mathbb{R}^p. Then, for every $t \geq 0$,

$$F(X_{t}^{1}, \ldots, X_{t}^{p}) = F(X_{0}^{1}, \ldots, X_{0}^{p}) + \sum_{j=1}^{p} \int_{0}^{t} \frac{\partial F}{\partial x^j}(X_{s}^{1}, \ldots, X_{s}^{p})dX_{s}^{j}$$

$$+ \frac{1}{2} \sum_{j,k=1}^{p} \int_{0}^{t} \frac{\partial^2 F}{\partial x^j x^k}(X_{s}^{1}, \ldots, X_{s}^{p})d\langle X_{s}^{j}, X_{s}^{k} \rangle.$$

Last time, we proved the theorem in the case $p = 1$. This time we deal with the general case.
Proof of Theorem 5.10 (cont)

In the general case, the Taylor-Lagrange formula, applied for every \(n \geq 1 \) and every \(j \in \{0, \ldots, p_n - 1\} \) to the function

\[
[0, 1] \ni \theta \mapsto F(X_{t_{j+1}^n}^1 + \theta(X_{t_{j+1}^n}^1 - X_{t_j^n}^1), \ldots, X_{t_{j+1}^n}^p + \theta(X_{t_{j+1}^n}^p - X_{t_j^n}^p))
\]

gives

\[
F(X_{t_{j+1}^n}^1, \ldots, X_{t_{j+1}^n}^p) - F(X_{t_j^n}^1, \ldots, X_{t_j^n}^p) = \sum_{k=1}^p \frac{\partial F}{\partial x_k} (X_{t_j^n}^1, \ldots, X_{t_j^n}^p)(X_{t_{j+1}^n}^k - X_{t_j^n}^k)
\]

\[
+ \sum_{k,l=1}^p \frac{f_{n,j}^{k,l}}{2} (X_{t_{j+1}^n}^k - X_{t_j^n}^k)(X_{t_{j+1}^n}^l - X_{t_j^n}^l)
\]

where, for \(k, l \in \{1, \ldots, p\} \),

\[
f_{n,j}^{k,l} = \frac{\partial^2 F}{\partial x_k \partial x_l} (X_{t_j^n} + c(X_{t_{j+1}^n} - X_{t_j^n}))
\]

for some \(c \in [0, 1] \) (here we use the notation \(X_t = (X_t^1, \ldots, X_t^p) \)).
Proof of Theorem 5.10 (cont)

Proposition 5.9 can again be used to handle the terms involving first derivatives. Moreover, a slight modification of the arguments of the case $p = 1$ shows that, at least along a suitable sequence of values of n, we have for every $k, l \in \{1, \ldots, p\}$,

$$\lim_{n \to \infty} \sum_{j=1}^{p_n-1} f_{n,j}^{k,l} (X_{t_j}^k - X_{t_{j+1}}^k)(X_{t_j}^l - X_{t_{j+1}}^l)$$

$$= \int_0^t \frac{\partial^2 F}{\partial x^k \partial x^l} (X_s^1, \ldots, X_s^p) d\langle X^k, X^l \rangle_s$$

in probability. This completes the proof of the theorem.
An important special case of Ito's formula is the integration by parts formula, which is obtained by taking $p = 2$ and $F(x, y) = xy$: if X and Y are two continuous semimartingales, we have

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \langle X, Y \rangle_t.$$

In particular, if $Y = X$,

$$X_t^2 = X_0^2 + 2 \int_0^t X_s dX_s + \langle X, X \rangle_t.$$

When $X = M$ is a continuous local martingale, we know from the definition of the quadratic variation that $M_t^2 - \langle M, M \rangle_t$ is a continuous local martingale. The previous formula shows that this continuous local martingale is

$$M_0^2 + 2 \int_0^t M_s dM_s.$$
Let B be a 1-dim (\mathcal{F}_t)-Brownian motion. B is a continuous local martingale (a martingale if $B_0 \in L^1$) and $\langle B, B \rangle_t = t$. In this particular case, Ito’s formula reads

$$F(B_t) = F(B_0) + \int_0^t F'(B_s)dB_s + \frac{1}{2} \int_0^t F''(B_s)ds.$$

Taking $X^1_t = t$, $X^2_t = B_t$, we also get for every twice continuously differentiable function $F(t, x)$ on $\mathbb{R}_+ \times \mathbb{R}$,

$$F(t, B_t) = F(0, B_0) + \int_0^t \frac{\partial F}{\partial x}(s, B_s)dB_s + \int_0^t \left(\frac{\partial F}{\partial s} + \frac{\partial^2 F}{\partial x^2} \right)(s, B_s)ds.$$
Let \(B_t = (B^1_t, \ldots, B^d_t) \) be a \(d \)-dim \((\mathcal{F}_t)\)-Brownian motion. Note that the components \(B^1, \ldots, B^d \) are \((\mathcal{F}_t)\)-Brownian motions. By Proposition 4.16, \(\langle B^i, B^j \rangle_t = 0 \) if \(i \neq j \). Ito’s formula then shows that, for every twice continuously differentiable function \(F \) on \(\mathbb{R}^d \),

\[
F(B^1_t, \ldots, B^d_t) - F(B^1_0, \ldots, B^d_0) = \sum_{i}^{d} \int_{0}^{t} \frac{\partial F}{\partial x^i}(B^1_s, \ldots, B^d_s)dB^i_s + \frac{1}{2} \int_{0}^{t} \Delta F(B^1_s, \ldots, B^d_s)ds.
\]

The latter formula is often written in the shorter form

\[
F(B_t) = F(B_0) + \int_{0}^{t} \nabla F(B_s) \cdot dB_s + \frac{1}{2} \int_{0}^{t} \Delta F(B_s)ds.
\]
It frequently occurs that one needs to apply Ito’s formula to a function F which is only defined (and twice continuously differentiable) on an open subset U of \mathbb{R}^p. In this case, we can argue in the following way. Suppose that there exists another open set V, such that $(X_0^1, \ldots, X_0^p) \in V \text{ a.s and } \overline{V} \subset U$. Typically V will be the set of all points whose distance from U^c is strictly greater than some $\epsilon > 0$. Define $T_V = \inf\{ t \geq 0 : X_t \not\in V \}$, which is a stopping time. Simple analytic arguments allow us to find a function G which is twice continuously differentiable on \mathbb{R}^p and coincides with F on \overline{V}. We can now apply Ito’s formula obtain the canonical decomposition of the semimartingale $G(X_{t\wedge T_V}^1, \ldots, X_{t\wedge T_V}^p) = F(X_{t\wedge T_V}^1, \ldots, X_{t\wedge T_V}^p)$ and this decomposition only involves the first and second derivatives of F on V. If in addition we know that the process (X_t^1, \ldots, X_t^p) a.s. does not exit U, we can let the open set V increase to U, and we get that Ito’s formula for $F(X_t^1, \ldots, X_t^p)$ remains valid exactly in the same form as in Theorem 5.10. These considerations can be applied, for instance, to the function $F(x) = \log x$ and to a semimartingale X taking strictly positive values.
A process with values in the complex plane \mathbb{C} is called a complex continuous local martingale if both its real part and its imaginary part are continuous local martingales.

Proposition 5.11

Let M be a continuous local martingale and, for every $\lambda \in \mathbb{C}$, let

$$
\mathcal{E}(\lambda M)_t = \exp \left(\lambda M_t - \frac{\lambda^2}{2} \langle M, M \rangle_t \right).
$$

The process $\mathcal{E}(\lambda M)$ is a complex continuous local martingale, which can be written in the form

$$
\mathcal{E}(\lambda M)_t = e^{\lambda M_0} + \lambda \int_0^t \mathcal{E}(\lambda M)_s dM_s.
$$
A process with values in the complex plane \(\mathbb{C}\) is called a complex continuous local martingale if both its real part and its imaginary part are continuous local martingales.

Proposition 5.11

Let \(M\) be a continuous local martingale and, for every \(\lambda \in \mathbb{C}\), let

\[
\mathcal{E}(\lambda M)_t = \exp \left(\lambda M_t - \frac{\lambda^2}{2} \langle M, M \rangle_t \right).
\]

The process \(\mathcal{E}(\lambda M)\) is a complex continuous local martingale, which can be written in the form

\[
\mathcal{E}(\lambda M)_t = e^{\lambda M_0} + \lambda \int_0^t \mathcal{E}(\lambda M)_s dM_s.
\]
Proof of Proposition 5.11

If \(F(r, x) \) is a twice continuously differentiable function on \(\mathbb{R}^2 \), Ito’s formula gives

\[
F(\langle M, M \rangle_t, M_t) = F(0, M_0) + \int_0^t \frac{\partial F}{\partial x} (\langle M, M \rangle_s, M_s) dM_s \\
+ \int_0^t \left(\frac{\partial F}{\partial r} + \frac{1}{2} \frac{\partial^2 F}{\partial x^2} \right) (\langle M, M \rangle_s, M_s) d\langle M, M \rangle_s.
\]

Hence, \(F(\langle M, M \rangle_t, M_t) \) is a continuous local martingale as soon as \(F \) satisfies the equation

\[
\frac{\partial F}{\partial r} + \frac{1}{2} \frac{\partial^2 F}{\partial x^2} = 0.
\]

This equation holds for \(F(r, x) = \exp(\lambda x - \frac{\lambda^2}{2} r) \). Moreover, for this choice of \(F \) we have \(\frac{\partial F}{\partial x} = \lambda F \), which leads to the formula of the statement.
Outline

1. General Info
2. 5.2 Ito’s Formula
3. 5.3 A Few Consequences of Ito’s Formula
Theorem 5.12

Let $X = (X^1, \ldots, X^d)$ be a continuous (\mathcal{F}_t)-adapted process. The following are equivalent:

(i) X is a d-dim (\mathcal{F}_t)-Brownian motion.

(ii) The processes X^1, \ldots, X^d are continuous local martingales, and $\langle X^i, X^j \rangle_t = \delta_{ij} t$ for every $i, j \in \{1, \ldots, d\}$.

In particular, a continuous local martingale M is an (\mathcal{F}_t)-Brownian motion if and only if $\langle M, M \rangle_t = t$ for every $t \geq 0$, or equivalently if and only if $M_t^2 - t$ is a continuous local martingale.

Proof of Theorem 5.12

$(i) \implies (ii)$ is known. We only need to show $(ii) \implies (i)$. So we assume (ii) holds. Let $\xi = (\xi_1, \ldots, \xi_d) \in \mathbb{R}^d$. Then $\xi \cdot X_t = \sum_{j=1}^d \xi_j X^j_t$ is a cont
Theorem 5.12

Let $X = (X^1, \ldots, X^d)$ be a continuous (\mathcal{F}_t)-adapted process. The following are equivalent:

(i) X is a d-dim (\mathcal{F}_t)-Brownian motion.

(ii) The processes X^1, \ldots, X^d are continuous local martingales, and $\langle X^i, X^j \rangle_t = \delta_{ij} t$ for every $i, j \in \{1, \ldots, d\}$.

In particular, a continuous local martingale M is an (\mathcal{F}_t)-Brownian motion if and only if $\langle M, M \rangle_t = t$ for every $t \geq 0$, or equivalently if and only if $M_t^2 - t$ is a continuous local martingale.

Proof of Theorem 5.12

(i)\Rightarrow(ii) is known. We only need to show (ii)\Rightarrow(i). So we assume (ii) holds. Let $\xi = (\xi_1, \ldots, \xi_d) \in \mathbb{R}^d$. Then $\xi \cdot X_t = \sum_{j=1}^d \xi_j X_t^j$ is a cont
Proof of Theorem 5.12 (cont)

local martingale with quadratic variation

\[\sum_{j=1}^{d} \sum_{k=1}^{d} \xi_j \xi_k \langle X^j, X^k \rangle_t = |\xi|^2 t. \]

By Proposition 5.11, \(\exp(i \xi \cdot X_t + \frac{1}{2} |\xi|^2 t) \) is a complex continuous local martingale. This complex continuous local martingale is bounded on every interval \([0, a], a > 0\), and is therefore a (true) martingale, in the sense that its real and imaginary parts are both martingales. Hence, for every \(0 \leq s < t \),

\[\mathbb{E} \left[\exp(i \xi \cdot X_t + \frac{1}{2} |\xi|^2 t) | F_s \right] = \exp(i \xi \cdot X_s + \frac{1}{2} |\xi|^2 s). \]

and thus

\[\mathbb{E} \left[\exp(i \xi \cdot (X_t - X_s) | F_s \right] = \exp(-\frac{1}{2} |\xi|^2 (t - s)). \]
Proof of Theorem 5.12 (cont)

It follows that, for every $A \in \mathcal{F}_s$,

$$
\mathbb{E} [1_A \exp(i\xi \cdot (X_t - X_s))] = \mathbb{P}(A) \exp(-\frac{1}{2}|\xi|^2(t - s)).
$$

Taking $A = \Omega$, we get that $X_t - X_s$ is a centered Gaussian vector with covariance matrix $(t - s)\text{id}$ (in particular, the components $X_t^j - X_s^j$, $1 \leq j \leq d$, are independent). Furthermore, fix $A \in \mathcal{F}_s$ with $\mathbb{P}(A) > 0$, and write \mathbb{P}_A for the conditional probability $\mathbb{P}_A(\cdot) = \mathbb{P}(\cdot | A)$. We also obtain that

$$
\mathbb{E}_{\mathbb{P}_A} [\exp(i\xi \cdot (X_t - X_s))] = \exp(-\frac{1}{2}|\xi|^2(t - s))
$$

which means that the law of $X_t - X_s$ under \mathbb{P}_A is the same as its law under \mathbb{P}. Therefore, for any non-negative measurable function f on \mathbb{R}^d, we have
Proof of Theorem 5.12 (cont)

\[\mathbb{E}_{\mathbb{P}_A} [f(X_t - X_s)] = \mathbb{E} [f(X_t - X_s)] \]

or equivalently

\[\mathbb{E} [1_A f(X_t - X_s)] = \mathbb{P}(A) \mathbb{E} [f(X_t - X_s)]. \]

This holds for any \(A \in \mathcal{F}_s \) (when \(\mathbb{P}(A) = 0 \) this equality is trivial), and thus \(X_t - X_s \) is independent of \(\mathcal{F}_s \).

It follows that, if \(0 = t_0 < t_s < \cdots < t_p \), the vectors \(X_{t_1} - X_{t_0}, \cdots, X_{t_p} - X_{t_{p-1}} \) are independent. Since the components of each of these vectors are independent random variables, we obtain that all variables \(X_{t_k}^j - X_{t_{k-1}}^j, 1 \leq j \leq d, 1 \leq k \leq p \), are independent, and \(X_{t_k}^j - X_{t_{k-1}}^j \) is distributed according to \(\mathcal{N}(0, t_k - t_{k-1}) \). This implies that \(X_t - X_0 \) is a \(d \)-dimensional Brownian motion started from 0.
Proof of Theorem 5.12 (cont)

Since we also know that $X - X_0$ is independent of X_0, we get that X is a d-dim Brownian motion. Finally, X is adapted and has independent increments with respect to the filtration (\mathcal{F}_t), so that X is a d-dim (\mathcal{F}_t)-Brownian motion.

The next theorem shows that any continuous local martingale M can be written as a “time-changed” Brownian motion. It follows that the sample paths of M are Brownian sample paths run at a different (varying) speed, and certain almost sure properties of sample paths of M can be deduced from the corresponding properties of Brownian sample paths. For instance, under the condition $\langle M, M \rangle_\infty = \infty$, the sample paths of M must oscillate between $-\infty$ and ∞ as $t \to \infty$.
Proof of Theorem 5.12 (cont)

Since we also know that \(X - X_0 \) is independent of \(X_0 \), we get that \(X \) is a \(d \)-dim Brownian motion. Finally, \(X \) is adapted and has independent increments with respect to the filtration \((\mathcal{F}_t) \), so that \(X \) is a \(d \)-dim \((\mathcal{F}_t) \)-Brownian motion.

The next theorem shows that any continuous local martingale \(M \) can be written as a “time-changed” Brownian motion. It follows that the sample paths of \(M \) are Brownian sample paths run at a different (varying) speed, and certain almost sure properties of sample paths of \(M \) can be deduced from the corresponding properties of Brownian sample paths. For instance, under the condition \(\langle M, M \rangle_\infty = \infty \), the sample paths of \(M \) must oscillate between \(-\infty\) and \(\infty\) as \(t \to \infty \).
Theorem 5.13 (Dambis-Dubins-Schwarz)

Let M be a continuous local martingale such that $\langle M, M \rangle_\infty = \infty$ a.s. There exists a Brownian motion $(\beta_s)_{s \geq 0}$ such that

$$a.s. \quad \forall t \geq 0, \quad M_t = \beta_{\langle M, M \rangle_t}.$$

Remarks

(i) One can remove the assumption $\langle M, M \rangle_\infty = \infty$, at the cost of enlarging the underlying probability space.

(ii) The Brownian motion β is not adapted with respect to the filtration (\mathcal{F}_t), but with respect to a “time-changed” filtration, as the proof will show.
Theorem 5.13 (Dambis-Dubins-Schwarz)

Let M be a continuous local martingale such that $\langle M, M \rangle_\infty = \infty$ a.s. There exists a Brownian motion $(\beta_s)_{s \geq 0}$ such that

$$a.s. \quad \forall t \geq 0, \quad M_t = \beta_{\langle M, M \rangle_t}.$$

Remarks

(i) One can remove the assumption $\langle M, M \rangle_\infty = \infty$, at the cost of enlarging the underlying probability space.

(ii) The Brownian motion β is not adapted with respect to the filtration (\mathcal{F}_t), but with respect to a “time-changed” filtration, as the proof will show.