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3.3 Continuous Time Martingales and Supermartingales

Lemma 3.16

Let D be a countable dense subset of R, and let f be a real function
defined on D. We assume that, for every T € D,

(i) fis boundedon DN |0, T],
(ii) for all rationals a and b such that a < b,

ML, (DN [0, T]) < cc.
Then, the right-limit

f(t+) = sl,ll,ltr,?eD f(s)

exists for every real t > 0, and similarly the left-limit

f(t=) = lim ()

exists for every real t > 0. Furthermore, the function g : R, — R
defined by g(t) = f(t+) is cadlag.




Time Martingales and Supermartingales

Theorem 3.17

Let (Xt)¢>0 be a supermartingale, and let D be a countable dense
subset of R.
(i) For almost every w € Q, the restriction of the function s — Xs(w)
to D has a right-limit

XH-(W) = Siilll‘TeDXS(w)’ Vte [0, OO);

and a left-limit

Xi—(w); = m"fTeDXS(”)’ vt € (0,00).

(ii) Forevery t >0, X;,. € L' and
Xt > E[ X4 | F

with equality if the function t — E[X{] is right-continuous. The
process (Xi+)i>0 is a supermartingale with respect to (Fy). Itis
a martingale if X is a martingale.
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Proof of Theorem 3.17
(i) Fix T € D. By the remark following Proposition 3.15, we have

sup | Xs| < o0, as
seDN[0,T]

As in the proof of Proposition 3.15, we can choose a sequence
(Dm)m>1 of finite subsets of D that increase to DN [0, T] and are such
that 0, T € D,,. Doob’s upcrossing inequality for discrete
supermartingales gives, for every a < b and every m > 1,

EIVS(Dn)] < 51— E[(Xr ~ &) ]

We let m 1 co and get by monotone convergence

E[MX (DN 0, T])] < ﬁ]E[(XT —a)’] < oo.
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Proof of Theorem 3.17 (cont)

We thus have
ME(DN[0,T]) < o0, as.

Define N to be the event

Ureo ({ sup |Xi| = 00} U (Uasec.a<s{M(D N[0, T]) = oo})>
teD[0,T]
(1)

Then P(N) = 0 by the preceding considerations. On the other hand, if
w ¢ N, the function D > f — X;(w) satisfies all assumptions of Lemma
3.16. Assertion (i) now follows from this lemma.
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Proof of Theorem 3.17 (cont)

(ii) For every w € Q, not just for w ¢ N, we define

Xio (@) = limgy ¢sep Xs(w), if the Iimit exists
0, otherwise.
With this definition, X;. is Fi.-measurable.
Fix t > 0 and choose a sequence (f;)n>0 in D such that £,
decreases strictly to t as n 1 oco. Then, by construction, we have a.s.

Xt+ = lim th.
ntoo

Set Yy = X;_, for k < 0. Then Y is a backward supermartingale with
respect to the filtration Hx = F;_,. By Proposition 3.13, we have
SUP,<o E[| Yk|] < co. Convergence theorem for backward
supermartingales implies that X; converges to X, in L'. Thus

Xpr el
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Proof of Theorem 3.17 (cont)

Thanks to the L'-convergence, we can let n 1 oo in the inequality
Xt > E[X;,|F] to get
Xt = E[X+ | ]

Use the L' convergence again, we get E[X;;] = lim,_, o E[X;,]. Thus,
if the function s — E[X;] is right-continuous, we must have

E[Xi] = E[Xi+] = E[E[X:+|F]], and the inequality X; > E[X:|F:] then
forces X; = E[ Xt | Fi]-
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Proof of Theorem 3.17 (cont)

We have already noticed that X;, is F;,-measurable. Let s < t and
let (sn)n>0 be a sequence in D that decreases strictly to s. We may
assume that s, < f, for every n. Then as previously Xs, converges to
Xs. in L', and thus, if A € Fsy (which implies A € F, for every n), we
have

E[Xs: 1] = lim E[X, 14] > im E[X, 14] = EXi: 4] = EEDX;: | For 14

Since this inequality holds for every A € Fs., and since Xs; and
E[X;.|Fs+] are both Fs,-measurable, it follows that

Xs+ > E[Xe+ | Fsi]- Finally, if X is a martingale, inequalities can be
replaced by equalities in the previous considerations.
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Theorem 3.18

Assume that the filtration (F;) is right-continuous and complete. Let
X = (Xt)i>0 be a supermartingale such that the function t — E[X] is
right continuous. Then X has a modification with cadlag sample
paths, which is also an (F;)-supermartingale.
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Theorem 3.18

Assume that the filtration (F;) is right-continuous and complete. Let
X = (Xt)i>0 be a supermartingale such that the function t — E[X{] is
right continuous. Then X has a modification with cadlag sample
paths, which is also an (F;)-supermartingale.

Proof of Theorem 3.18

Let D be a countable dense subset of R, as in Theorem 3.17. Let N
be the negligible set defined in (1). We set, for every t > 0,

_ ) X (w) ifwéN,
Yi(w) = {o, if w e N,

Lemma 3.16 then shows that the sample paths of Y are cadlag.
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Proof of Theorem 3.18 (cont)

The random variable X;, is F:.-measurable, and thus F;-measurable
since the filtration is right-continuous. As the negligible set N belongs
to F.., the completeness of the filtration ensures that Y; is
Fi-measurable. By Theorem 3.17 (ii), we have for every t > 0,

Xi = E[Xt+|.Ft] = XH— = %, a.s.

because X:, is F;-measurable. Consequently, Y is a modification of
X. The process Y is adapted to the filtration (F;). Since Y is a
modification of X the inequality E[X;|Fs] < Xs, for 0 < s < t, implies
that the same inequality holds for Y.
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(i) The assumption that the filtration is right-continuous is
necessary. Take Q = {—1, 1} with the probability P defined by
P({—1}) =P({1}) = }. Let ¢ be the random variable e(w) = w,
and let the process (X;):>o0 be defined by X; = 0if f € [0, 1], and
Xt = eif t > 1. (X;)>0 is @ martingale wrt its canonical filtration
(FX) (which is complete since there are no nonempty negligible
sets!). On the other hand, no modification of X can be
right-continuous at t = 1. This does not contradict the theorem
since the filtration is not right-continuous (77, # 7).

(ii) The right-continuity of t — E[X{] is also necessary. Take
X: = f(t), where f is any non-increasing deterministic function. If
f is not right-continuous, no modification of X can have
right-continuous sample paths.
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3.4 Optional Stopping Theorems

Theorem 3.19

Let X be a supermartingale with right-continuous sample paths.
Assume that (X;):>o is bounded in L'. Then there exists a random
variable X, € L' such that

lim X; = X, as.
t—o0




3.4 Optional Stopping Theorems

Theorem 3.19

Let X be a supermartingale with right-continuous sample paths.
Assume that (X;):>o is bounded in L'. Then there exists a random
variable X, € L' such that

lim X; = X, as.
t—o0

Proof of Theorem 3.19

Let D be a countable dense subset of R... From the proof of Theorem
3.17, we have, forevery T € D and a < b,

EIMA(DN[0, T))] < 5 EI(X; — a) ]

By monotone convergence, we get, for every a < b,

E[M3(D)] <

1 _
b astg(;))E[(X,— a)] <o

since (X;)i>o is bounded in L'. Hence, a.s. for all rationals a < b,
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Proof of Theorem 3.19 (cont)

we have MX (D) < cc. This implies that the limit

Xo = lim X ()

D>t— o0

exists a.s. in [—oo, o0]. We can in fact exclude the values oo and —oo,
since Fatou’s lemma gives

E[|X]] < limint E[X.]] < oo,
D>t— oo

and we get that X, € L'. The right-continuity of sample paths allows
us to remove the restriction ¢t € D in the limit (2).
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Proof of Theorem 3.19 (cont)

we have MX (D) < cc. This implies that the limit

Xo = lim X ()

D>t— o0

exists a.s. in [—oo, o0]. We can in fact exclude the values oo and —oo,
since Fatou’s lemma gives

E[|X]] < limint E[X.]] < oo,
D>t— oo

and we get that X, € L'. The right-continuity of sample paths allows
us to remove the restriction ¢t € D in the limit (2).

Under the assumptions of Theorem 3.19, the convergence of X; to
X5, may not hold in L'. The next result gives, in the case of a
martingale, necessary and sufficient conditions for the convergence
to also hold in L'.
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Definition 3.20

A martingale (X;):>o is said to be closed if there exists a random
variable Z < L' such that, for every t > 0,

X; = E[Z]F].
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Definition 3.20

A martingale (X;):>o is said to be closed if there exists a random
variable Z < L' such that, for every t > 0,

X; = E[Z]F].

Theorem 3.21

Let X be a martingale with right-continuous sample paths. Then the
following properties are equivalent:

(i) X is closed;
(ii) (Xt)r>o0 is uniformly integrable;
(iii) X; converges a.s. andin L' as t — oo.

Moreover, if these properties hold, we have X; = E[X|F] for every
t > 0, where X, € L' is the a.s. limit of X; as t — oc.
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Proof of Theorem 3.21

(i)=(ii) is trivial.

(if)=(iii) If (i) holds, then (X;):>o is bounded in L' and Proposition
3.19 implies that X; converges a.s. in L'. By uniform integrability, the
convergence also holds in L.

(iii)=-(i) If (iii) holds, for every s > 0, we can pass to the limit t — oo
in the equality Xs = E[X;|Fs] (using the fact that the conditional
expectation is continuous for the L'-norm), and we get
Xs = E[ X | Fs]-
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