▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Math 562 Fall 2020

Renming Song

University of Illinois at Urbana-Champaign

September 21, 2020

Outline

1 3.3 Continuous Time Martingales and Supermartingales

2 3.4 Optional Stopping Theorems

Lemma 3.16

Let *D* be a countable dense subset of \mathbb{R}_+ and let *f* be a real function defined on *D*. We assume that, for every $T \in D$,

(i) *f* is bounded on $D \cap [0, T]$,

(ii) for all rationals a and b such that a < b,

 $M^{f}_{ab}(D \cap [0, T]) < \infty.$

Then, the right-limit

$$f(t+) := \lim_{s \downarrow \downarrow t, s \in D} f(s)$$

exists for every real $t \ge 0$, and similarly the left-limit

$$f(t-) := \lim_{s \uparrow \uparrow t, s \in D} f(s)$$

exists for every real t > 0. Furthermore, the function $g : \mathbb{R}_+ \to \mathbb{R}$ defined by g(t) = f(t+) is cadlag.

Let $(X_t)_{t \ge 0}$ be a supermartingale, and let *D* be a countable dense subset of \mathbb{R}_+ .

(i) For almost every $\omega \in \Omega$, the restriction of the function $s \to X_s(\omega)$ to *D* has a right-limit

$$X_{t+}(\omega) := \lim_{s \downarrow \downarrow t, s \in D} X_s(\omega), \quad \forall t \in [0,\infty),$$

and a left-limit

$$X_{t-}(\omega)$$
; = $\lim_{s\uparrow\uparrow t,s\in D} X_s(\omega)$, $\forall t\in(0,\infty)$.

(ii) For every $t \ge 0$, $X_{t+} \in L^1$ and

 $X_t \geq \mathbb{E}[X_{t+}|\mathcal{F}_t]$

with equality if the function $t \mapsto \mathbb{E}[X_t]$ is right-continuous. The process $(X_{t+})_{t\geq 0}$ is a supermartingale with respect to (\mathcal{F}_{t+}) . It is a martingale if X is a martingale.

Proof of Theorem 3.17

(i) Fix $T \in D$. By the remark following Proposition 3.15, we have

$$\sup_{s\in D\cap[0,T]}|X_s|<\infty,\quad a.s$$

As in the proof of Proposition 3.15, we can choose a sequence $(D_m)_{m\geq 1}$ of finite subsets of *D* that increase to $D \cap [0, T]$ and are such that $0, T \in D_m$. Doob's upcrossing inequality for discrete supermartingales gives, for every a < b and every $m \geq 1$,

$$\mathbb{E}[M_{ab}^{\chi}(D_m)] \leq \frac{1}{b-a}\mathbb{E}[(X_T-a)^-].$$

We let $m \uparrow \infty$ and get by monotone convergence

$$\mathbb{E}[M^X_{ab}(D\cap [0,\,T])] \leq \frac{1}{b-a}\mathbb{E}[(X_T-a)^-] < \infty.$$

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem 3.17 (cont)

We thus have

$$M_{ab}^X(D\cap [0,T])<\infty, \quad a.s.$$

Define N to be the event

$$\cup_{T \in D} \left(\{ \sup_{t \in D[0,T]} |X_t| = \infty \} \cup \left(\cup_{a,b \in \mathbb{Q}, a < b} \{ M_{ab}^X(D \cap [0,T]) = \infty \} \right) \right)$$
(1)

Then $\mathbb{P}(N) = 0$ by the preceding considerations. On the other hand, if $\omega \notin N$, the function $D \ni t \mapsto X_t(\omega)$ satisfies all assumptions of Lemma 3.16. Assertion (i) now follows from this lemma.

Proof of Theorem 3.17 (cont)

(ii) For every $\omega \in \Omega$, not just for $\omega \notin N$, we define

$$X_{t+}(\omega) = \begin{cases} \lim_{s \downarrow \downarrow t, s \in D} X_s(\omega), & \text{if the limit exists} \\ 0, & \text{otherwise.} \end{cases}$$

With this definition, X_{t+} is \mathcal{F}_{t+} -measurable.

Fix $t \ge 0$ and choose a sequence $(t_n)_{n\ge 0}$ in *D* such that t_n decreases strictly to *t* as $n \uparrow \infty$. Then, by construction, we have a.s.

$$X_{t+}=\lim_{n\uparrow\infty}X_{t_n}.$$

Set $Y_k = X_{t_{-k}}$ for $k \le 0$. Then *Y* is a backward supermartingale with respect to the filtration $\mathcal{H}_k = \mathcal{F}_{t_{-k}}$. By Proposition 3.13, we have $\sup_{k\le 0} \mathbb{E}[|Y_k|] < \infty$. Convergence theorem for backward supermartingales implies that X_{t_n} converges to X_{t+} in L^1 . Thus $X_{t+} \in L^1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof of Theorem 3.17 (cont)

Thanks to the *L*¹-convergence, we can let $n \uparrow \infty$ in the inequality $X_t \ge \mathbb{E}[X_{t_n}|\mathcal{F}_t]$ to get

 $X_t \geq \mathbb{E}[X_{t+}|\mathcal{F}_t].$

Use the L^1 convergence again, we get $\mathbb{E}[X_{t+1}] = \lim_{n \to \infty} \mathbb{E}[X_{t_n}]$. Thus, if the function $s \mapsto \mathbb{E}[X_s]$ is right-continuous, we must have $E[X_t] = \mathbb{E}[X_{t+1}] = \mathbb{E}[\mathbb{E}[X_{t+1}|\mathcal{F}_t]]$, and the inequality $X_t \ge \mathbb{E}[X_{t+1}|\mathcal{F}_t]$ then forces $X_t = \mathbb{E}[X_{t+1}|\mathcal{F}_t]$.

Proof of Theorem 3.17 (cont)

We have already noticed that X_{t+} is \mathcal{F}_{t+} -measurable. Let s < t and let $(s_n)_{n\geq 0}$ be a sequence in D that decreases strictly to s. We may assume that $s_n \leq t_n$ for every n. Then as previously X_{s_n} converges to X_{s+} in L^1 , and thus, if $A \in \mathcal{F}_{s+}$ (which implies $A \in \mathcal{F}_{s_n}$ for every n), we have

$$\mathbb{E}[X_{s+1_A}] = \lim_{n \uparrow \infty} \mathbb{E}[X_{s_n} \mathbf{1}_A] \ge \lim_{n \uparrow \infty} \mathbb{E}[X_{t_n} \mathbf{1}_A] = \mathbb{E}[X_{t+1_A}] = \mathbb{E}[\mathbb{E}[X_{t+1_A}] = \mathbb{E}[\mathbb{E}[$$

Since this inequality holds for every $A \in \mathcal{F}_{s+}$, and since X_{s+} and $\mathbb{E}[X_{t+}|\mathcal{F}_{s+}]$ are both \mathcal{F}_{s+} -measurable, it follows that $X_{s+} \geq \mathbb{E}[X_{t+}|\mathcal{F}_{s+}]$. Finally, if *X* is a martingale, inequalities can be replaced by equalities in the previous considerations.

・ロト・日本・日本・日本・日本・日本

Assume that the filtration (\mathcal{F}_t) is right-continuous and complete. Let $X = (X_t)_{t \ge 0}$ be a supermartingale such that the function $t \mapsto \mathbb{E}[X_t]$ is right continuous. Then X has a modification with cadlag sample paths, which is also an (\mathcal{F}_t)-supermartingale.

Proof of Theorem 3.18

Let *D* be a countable dense subset of \mathbb{R}_+ as in Theorem 3.17. Let *N* be the negligible set defined in (1). We set, for every $t \ge 0$,

$$Y_t(\omega) = \begin{cases} X_{t+}(\omega) & \text{if } \omega \notin N, \\ 0, & \text{if } \omega \in N. \end{cases}$$

Lemma 3.16 then shows that the sample paths of Y are cadlag.

Assume that the filtration (\mathcal{F}_t) is right-continuous and complete. Let $X = (X_t)_{t \ge 0}$ be a supermartingale such that the function $t \mapsto \mathbb{E}[X_t]$ is right continuous. Then X has a modification with cadlag sample paths, which is also an (\mathcal{F}_t)-supermartingale.

Proof of Theorem 3.18

Let *D* be a countable dense subset of \mathbb{R}_+ as in Theorem 3.17. Let *N* be the negligible set defined in (1). We set, for every $t \ge 0$,

$$Y_t(\omega) = egin{cases} X_{t+}(\omega) & ext{if } \omega
otin N, \ 0, & ext{if } \omega \in N. \end{cases}$$

Lemma 3.16 then shows that the sample paths of *Y* are cadlag.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof of Theorem 3.18 (cont)

The random variable X_{t+} is \mathcal{F}_{t+} -measurable, and thus \mathcal{F}_t -measurable since the filtration is right-continuous. As the negligible set N belongs to \mathcal{F}_{∞} , the completeness of the filtration ensures that Y_t is \mathcal{F}_t -measurable. By Theorem 3.17 (ii), we have for every $t \ge 0$,

$$X_t = \mathbb{E}[X_{t+}|\mathcal{F}_t] = X_{t+} = Y_t, \quad a.s.$$

because X_{t+} is \mathcal{F}_t -measurable. Consequently, Y is a modification of X. The process Y is adapted to the filtration (\mathcal{F}_t). Since Y is a modification of X the inequality $\mathbb{E}[X_t|\mathcal{F}_s] \leq X_s$, for $0 \leq s < t$, implies that the same inequality holds for Y.

Remarks

- (i) The assumption that the filtration is right-continuous is necessary. Take $\Omega = \{-1, 1\}$ with the probability \mathbb{P} defined by $\mathbb{P}(\{-1\}) = \mathbb{P}(\{1\}) = \frac{1}{2}$. Let ϵ be the random variable $\epsilon(\omega) = \omega$, and let the process $(X_t)_{t\geq 0}$ be defined by $X_t = 0$ if $t \in [0, 1]$, and $X_t = \epsilon$ if t > 1. $(X_t)_{t\geq 0}$ is a martingale wrt its canonical filtration (\mathcal{F}_t^X) (which is complete since there are no nonempty negligible sets!). On the other hand, no modification of X can be right-continuous at t = 1. This does not contradict the theorem since the filtration is not right-continuous $(\mathcal{F}_{1+}^X \neq \mathcal{F}_1^X)$.
- (ii) The right-continuity of $t \mapsto \mathbb{E}[X_t]$ is also necessary. Take $X_t = f(t)$, where f is any non-increasing deterministic function. If f is not right-continuous, no modification of X can have right-continuous sample paths.

Outline

3.3 Continuous Time Martingales and Supermartingales

2 3.4 Optional Stopping Theorems

Let *X* be a supermartingale with right-continuous sample paths. Assume that $(X_t)_{t\geq 0}$ is bounded in L^1 . Then there exists a random variable $X_{\infty} \in L^1$ such that

$$\lim_{t\to\infty}X_t=X_\infty,\quad a.s.$$

Proof of Theorem 3.19

Let *D* be a countable dense subset of \mathbb{R}_+ . From the proof of Theorem 3.17, we have, for every $T \in D$ and a < b,

$$\mathbb{E}[M_{ab}^X(D\cap [0,T])] \leq \frac{1}{b-a}\mathbb{E}[(X_T-a)^-].$$

By monotone convergence, we get, for every a < b,

$$\mathbb{E}[M_{ab}^{X}(D)] \leq \frac{1}{b-a} \sup_{t \geq 0} \mathbb{E}[(X_t - a)^{-}] < \infty$$

since $(X_t)_{t\geq 0}$ is bounded in L^1 . Hence, a.s. for all rationals a < b,

Let *X* be a supermartingale with right-continuous sample paths. Assume that $(X_t)_{t\geq 0}$ is bounded in L^1 . Then there exists a random variable $X_{\infty} \in L^1$ such that

$$\lim_{t\to\infty}X_t=X_\infty,\quad a.s.$$

Proof of Theorem 3.19

Let *D* be a countable dense subset of \mathbb{R}_+ . From the proof of Theorem 3.17, we have, for every $T \in D$ and a < b,

$$\mathbb{E}[M_{ab}^{X}(D\cap [0,T])] \leq \frac{1}{b-a}\mathbb{E}[(X_{T}-a)^{-}].$$

By monotone convergence, we get, for every a < b,

$$\mathbb{E}[M_{ab}^{\chi}(D)] \leq rac{1}{b-a} \sup_{t\geq 0} \mathbb{E}[(X_t-a)^-] < \infty$$

since $(X_t)_{t \ge 0}$ is bounded in L^1 . Hence, a.s. for all rationals a < b,

Proof of Theorem 3.19 (cont)

we have $M_{ab}^{\chi}(D) < \infty$. This implies that the limit

$$X_{\infty} := \lim_{D \ni t \to \infty} X_t \tag{2}$$

exists a.s. in $[-\infty,\infty].$ We can in fact exclude the values ∞ and $-\infty,$ since Fatou's lemma gives

$$\mathbb{E}[|X_{\infty}|] \leq \liminf_{D \ni t \to \infty} \mathbb{E}[|X_t|] < \infty,$$

and we get that $X_{\infty} \in L^1$. The right-continuity of sample paths allows us to remove the restriction $t \in D$ in the limit (2).

Under the assumptions of Theorem 3.19, the convergence of X_t to X_{∞} may not hold in L^1 . The next result gives, in the case of a martingale, necessary and sufficient conditions for the convergence to also hold in L^1 .

Proof of Theorem 3.19 (cont)

we have $M_{ab}^{\chi}(D) < \infty$. This implies that the limit

$$X_{\infty} := \lim_{D \ni t \to \infty} X_t \tag{2}$$

exists a.s. in $[-\infty,\infty].$ We can in fact exclude the values ∞ and $-\infty,$ since Fatou's lemma gives

$$\mathbb{E}[|X_{\infty}|] \leq \liminf_{D \ni t \to \infty} \mathbb{E}[|X_t|] < \infty,$$

and we get that $X_{\infty} \in L^1$. The right-continuity of sample paths allows us to remove the restriction $t \in D$ in the limit (2).

Under the assumptions of Theorem 3.19, the convergence of X_t to X_{∞} may not hold in L^1 . The next result gives, in the case of a martingale, necessary and sufficient conditions for the convergence to also hold in L^1 .

Definition 3.20

A martingale $(X_t)_{t\geq 0}$ is said to be closed if there exists a random variable $Z \in L^1$ such that, for every $t \geq 0$,

 $X_t = \mathbb{E}[Z|\mathcal{F}_t].$

Theorem 3.21

Let X be a martingale with right-continuous sample paths. Then the following properties are equivalent:

- (i) X is closed;
- (ii) $(X_t)_{t\geq 0}$ is uniformly integrable;
- (iii) X_t converges a.s. and in L^1 as $t \to \infty$.

Moreover, if these properties hold, we have $X_t = \mathbb{E}[X_{\infty}|\mathcal{F}_t]$ for every $t \ge 0$, where $X_{\infty} \in L^1$ is the a.s. limit of X_t as $t \to \infty$.

Definition 3.20

A martingale $(X_t)_{t\geq 0}$ is said to be closed if there exists a random variable $Z \in L^1$ such that, for every $t \geq 0$,

 $X_t = \mathbb{E}[Z|\mathcal{F}_t].$

Theorem 3.21

Let X be a martingale with right-continuous sample paths. Then the following properties are equivalent:

- (i) X is closed;
- (ii) $(X_t)_{t\geq 0}$ is uniformly integrable;
- (iii) X_t converges a.s. and in L^1 as $t \to \infty$.

Moreover, if these properties hold, we have $X_t = \mathbb{E}[X_{\infty}|\mathcal{F}_t]$ for every $t \ge 0$, where $X_{\infty} \in L^1$ is the a.s. limit of X_t as $t \to \infty$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof of Theorem 3.21

 $(i) \Rightarrow (ii)$ is trivial.

(ii) \Rightarrow (iii) If (ii) holds, then $(X_t)_{t\geq 0}$ is bounded in L^1 and Proposition 3.19 implies that X_t converges a.s. in L^1 . By uniform integrability, the convergence also holds in L^1 .

(iii) \Rightarrow (i) If (iii) holds, for every $s \ge 0$, we can pass to the limit $t \to \infty$ in the equality $X_s = \mathbb{E}[X_t | \mathcal{F}_s]$ (using the fact that the conditional expectation is continuous for the L^1 -norm), and we get $X_s = \mathbb{E}[X_{\infty} | \mathcal{F}_s]$.