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Lemma 3.16
Let D be a countable dense subset of R+ and let f be a real function
defined on D. We assume that, for every T ∈ D,

(i) f is bounded on D ∩ [0,T ],
(ii) for all rationals a and b such that a < b,

M f
ab(D ∩ [0,T ]) <∞.

Then, the right-limit

f (t+) := lim
s↓↓t,s∈D

f (s)

exists for every real t ≥ 0, and similarly the left-limit

f (t−) := lim
s↑↑t,s∈D

f (s)

exists for every real t > 0. Furthermore, the function g : R+ → R
defined by g(t) = f (t+) is cadlag.
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Theorem 3.17
Let (Xt )t≥0 be a supermartingale, and let D be a countable dense
subset of R+.

(i) For almost every ω ∈ Ω, the restriction of the function s → Xs(ω)
to D has a right-limit

Xt+(ω) := lim
s↓↓t,s∈D

Xs(ω), ∀t ∈ [0,∞),

and a left-limit

Xt−(ω); = lim
s↑↑t,s∈D

Xs(ω), ∀t ∈ (0,∞).

(ii) For every t ≥ 0, Xt+ ∈ L1 and

Xt ≥ E[Xt+|Ft ]

with equality if the function t 7→ E[Xt ] is right-continuous. The
process (Xt+)t≥0 is a supermartingale with respect to (Ft+). It is
a martingale if X is a martingale.
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Proof of Theorem 3.17
(i) Fix T ∈ D. By the remark following Proposition 3.15, we have

sup
s∈D∩[0,T ]

|Xs| <∞, a.s

As in the proof of Proposition 3.15, we can choose a sequence
(Dm)m≥1 of finite subsets of D that increase to D ∩ [0,T ] and are such
that 0,T ∈ Dm. Doob’s upcrossing inequality for discrete
supermartingales gives, for every a < b and every m ≥ 1,

E[MX
ab(Dm)] ≤ 1

b − a
E[(XT − a)−].

We let m ↑ ∞ and get by monotone convergence

E[MX
ab(D ∩ [0,T ])] ≤ 1

b − a
E[(XT − a)−] <∞.



3.3 Continuous Time Martingales and Supermartingales 3.4 Optional Stopping Theorems

Proof of Theorem 3.17 (cont)

We thus have
MX

ab(D ∩ [0,T ]) <∞, a.s.

Define N to be the event

∪T∈D

(
{ sup

t∈D[0,T ]

|Xt | =∞} ∪
(
∪a,b∈Q,a<b{MX

ab(D ∩ [0,T ]) =∞}
))

(1)
Then P(N) = 0 by the preceding considerations. On the other hand, if
ω /∈ N, the function D 3 t 7→ Xt (ω) satisfies all assumptions of Lemma
3.16. Assertion (i) now follows from this lemma.
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Proof of Theorem 3.17 (cont)

(ii) For every ω ∈ Ω, not just for ω /∈ N, we define

Xt+(ω) =

{
lims↓↓t,s∈D Xs(ω), if the limit exists
0, otherwise.

With this definition, Xt+ is Ft+-measurable.
Fix t ≥ 0 and choose a sequence (tn)n≥0 in D such that tn

decreases strictly to t as n ↑ ∞. Then, by construction, we have a.s.

Xt+ = lim
n↑∞

Xtn .

Set Yk = Xt−k for k ≤ 0. Then Y is a backward supermartingale with
respect to the filtration Hk = Ft−k . By Proposition 3.13, we have
supk≤0 E[|Yk |] <∞. Convergence theorem for backward
supermartingales implies that Xtn converges to Xt+ in L1. Thus
Xt+ ∈ L1.
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Proof of Theorem 3.17 (cont)

Thanks to the L1-convergence, we can let n ↑ ∞ in the inequality
Xt ≥ E[Xtn |Ft ] to get

Xt ≥ E[Xt+|Ft ].

Use the L1 convergence again, we get E[Xt+] = limn→∞ E[Xtn ]. Thus,
if the function s 7→ E[Xs] is right-continuous, we must have
E [Xt ] = E[Xt+] = E[E[Xt+|Ft ]], and the inequality Xt ≥ E[Xt+|Ft ] then
forces Xt = E[Xt+|Ft ].
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Proof of Theorem 3.17 (cont)

We have already noticed that Xt+ is Ft+-measurable. Let s < t and
let (sn)n≥0 be a sequence in D that decreases strictly to s. We may
assume that sn ≤ tn for every n. Then as previously Xsn converges to
Xs+ in L1, and thus, if A ∈ Fs+ (which implies A ∈ Fsn for every n), we
have

E[Xs+1A] = lim
n↑∞

E[Xsn 1A] ≥ lim
n↑∞

E[Xtn 1A] = E[Xt+1A] = E[E[Xt+|Fs+]1A].

Since this inequality holds for every A ∈ Fs+, and since Xs+ and
E[Xt+|Fs+] are both Fs+-measurable, it follows that
Xs+ ≥ E[Xt+|Fs+]. Finally, if X is a martingale, inequalities can be
replaced by equalities in the previous considerations.
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Theorem 3.18
Assume that the filtration (Ft ) is right-continuous and complete. Let
X = (Xt )t≥0 be a supermartingale such that the function t 7→ E[Xt ] is
right continuous. Then X has a modification with cadlag sample
paths, which is also an (Ft )-supermartingale.

Proof of Theorem 3.18
Let D be a countable dense subset of R+ as in Theorem 3.17. Let N
be the negligible set defined in (1). We set, for every t ≥ 0,

Yt (ω) =

{
Xt+(ω) if ω /∈ N,
0, if ω ∈ N.

Lemma 3.16 then shows that the sample paths of Y are cadlag.
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Proof of Theorem 3.18 (cont)

The random variable Xt+ is Ft+-measurable, and thus Ft -measurable
since the filtration is right-continuous. As the negligible set N belongs
to F∞, the completeness of the filtration ensures that Yt is
Ft -measurable. By Theorem 3.17 (ii), we have for every t ≥ 0,

Xt = E[Xt+|Ft ] = Xt+ = Yt , a.s.

because Xt+ is Ft -measurable. Consequently, Y is a modification of
X . The process Y is adapted to the filtration (Ft ). Since Y is a
modification of X the inequality E[Xt |Fs] ≤ Xs, for 0 ≤ s < t , implies
that the same inequality holds for Y .
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Remarks
(i) The assumption that the filtration is right-continuous is

necessary. Take Ω = {−1,1} with the probability P defined by
P({−1}) = P({1}) = 1

2 . Let ε be the random variable ε(ω) = ω,
and let the process (Xt )t≥0 be defined by Xt = 0 if t ∈ [0,1], and
Xt = ε if t > 1. (Xt )t≥0 is a martingale wrt its canonical filtration
(FX

t ) (which is complete since there are no nonempty negligible
sets!). On the other hand, no modification of X can be
right-continuous at t = 1. This does not contradict the theorem
since the filtration is not right-continuous (FX

1+ 6= FX
1 ).

(ii) The right-continuity of t 7→ E[Xt ] is also necessary. Take
Xt = f (t), where f is any non-increasing deterministic function. If
f is not right-continuous, no modification of X can have
right-continuous sample paths.
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Theorem 3.19
Let X be a supermartingale with right-continuous sample paths.
Assume that (Xt )t≥0 is bounded in L1. Then there exists a random
variable X∞ ∈ L1 such that

lim
t→∞

Xt = X∞, a.s.

Proof of Theorem 3.19
Let D be a countable dense subset of R+. From the proof of Theorem
3.17, we have, for every T ∈ D and a < b,

E[MX
ab(D ∩ [0,T ])] ≤ 1

b − a
E[(XT − a)−].

By monotone convergence, we get, for every a < b,

E[MX
ab(D)] ≤ 1

b − a
sup
t≥0

E[(Xt − a)−] <∞

since (Xt )t≥0 is bounded in L1. Hence, a.s. for all rationals a < b,



3.3 Continuous Time Martingales and Supermartingales 3.4 Optional Stopping Theorems

Theorem 3.19
Let X be a supermartingale with right-continuous sample paths.
Assume that (Xt )t≥0 is bounded in L1. Then there exists a random
variable X∞ ∈ L1 such that

lim
t→∞

Xt = X∞, a.s.

Proof of Theorem 3.19
Let D be a countable dense subset of R+. From the proof of Theorem
3.17, we have, for every T ∈ D and a < b,

E[MX
ab(D ∩ [0,T ])] ≤ 1

b − a
E[(XT − a)−].

By monotone convergence, we get, for every a < b,

E[MX
ab(D)] ≤ 1

b − a
sup
t≥0

E[(Xt − a)−] <∞

since (Xt )t≥0 is bounded in L1. Hence, a.s. for all rationals a < b,



3.3 Continuous Time Martingales and Supermartingales 3.4 Optional Stopping Theorems

Proof of Theorem 3.19 (cont)

we have MX
ab(D) <∞. This implies that the limit

X∞ := lim
D3t→∞

Xt (2)

exists a.s. in [−∞,∞]. We can in fact exclude the values∞ and −∞,
since Fatou’s lemma gives

E[|X∞|] ≤ lim inf
D3t→∞

E[|Xt |] <∞,

and we get that X∞ ∈ L1. The right-continuity of sample paths allows
us to remove the restriction t ∈ D in the limit (2).

Under the assumptions of Theorem 3.19, the convergence of Xt to
X∞ may not hold in L1. The next result gives, in the case of a
martingale, necessary and sufficient conditions for the convergence
to also hold in L1.
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Definition 3.20
A martingale (Xt )t≥0 is said to be closed if there exists a random
variable Z ∈ L1 such that, for every t ≥ 0,

Xt = E[Z |Ft ].

Theorem 3.21
Let X be a martingale with right-continuous sample paths. Then the
following properties are equivalent:

(i) X is closed;
(ii) (Xt )t≥0 is uniformly integrable;
(iii) Xt converges a.s. and in L1 as t →∞.
Moreover, if these properties hold, we have Xt = E[X∞|Ft ] for every
t ≥ 0, where X∞ ∈ L1 is the a.s. limit of Xt as t →∞.
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Proof of Theorem 3.21
(i)⇒(ii) is trivial.
(ii)⇒(iii) If (ii) holds, then (Xt )t≥0 is bounded in L1 and Proposition

3.19 implies that Xt converges a.s. in L1. By uniform integrability, the
convergence also holds in L1.

(iii)⇒(i) If (iii) holds, for every s ≥ 0, we can pass to the limit t →∞
in the equality Xs = E[Xt |Fs] (using the fact that the conditional
expectation is continuous for the L1-norm), and we get
Xs = E[X∞|Fs].
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