Outline
Outline

1. General Info

2. 2.2 Continuity of Sample Paths

3. 2.3 Properties of Brownian Sample Paths.
HW1 is posted on my homepage. I also setup HW1 in the course Moodle page. You need to submit your HW1 via Moodle. The due date for HW1 is 09/08 at noon.

Slides and videos of the lectures are also available from the Moodle page.
HW1 is posted on my homepage. I also setup HW1 in the course Moodle page. You need to submit your HW1 via Moodle. The due date for HW1 is 09/08 at noon.

Slides and videos of the lectures are also available from the Moodle page.
Outline

1. General Info

2. 2.2 Continuity of Sample Paths

3. 2.3 Properties of Brownian Sample Paths.
Proposition 2.5, which was stated for pre-Brownian motion, remains true for Brownian motions.

Proposition 2.5

Let \((B_t)_{t \geq 0}\) be Brownian motion. Then

(i) \((-B_t)_{t \geq 0}\) is a Brownian motion;

(ii) for every \(\lambda > 0\), \((\frac{1}{\lambda} B_{\lambda^2 t})_{t \geq 0}\) is a Brownian motion;

(iii) for every \(s \geq 0\), \((B_{s+t} - B_s)_{t \geq 0}\) is a Brownian motion and is independent of \(\sigma(B_r : r \leq s)\).

Property (iii) above is also known as the (simple) Markov property.
Proposition 2.5, which was stated for pre-Brownian motion, remains true for Brownian motions.

Proposition 2.5

Let \((B_t)_{t \geq 0}\) be Brownian motion. Then

(i) \((-B_t)_{t \geq 0}\) is a Brownian motion;

(ii) for every \(\lambda > 0\), \((\frac{1}{\lambda} B_{\lambda^2 t})_{t \geq 0}\) is a Brownian motion;

(iii) for every \(s \geq 0\), \((B_{s+t} - B_s)_{t \geq 0}\) is a Brownian motion and is independent of \(\sigma(B_r : r \leq s)\).

Property (iii) above is also known as the (simple) Markov property.
Proposition 2.5, which was stated for pre-Brownian motion, remains true for Brownian motions.

Proposition 2.5

Let \((B_t)_{t \geq 0}\) be Brownian motion. Then

(i) \((-B_t)_{t \geq 0}\) is a Brownian motion;

(ii) for every \(\lambda > 0\), \((\frac{1}{\lambda} B_{\lambda^2 t})_{t \geq 0}\) is a Brownian motion;

(iii) for every \(s \geq 0\), \((B_{s+t} - B_s)_{t \geq 0}\) is a Brownian motion and is independent of \(\sigma(B_r : r \leq s)\).

Property (iii) above is also known as the (simple) Markov property.
Let $C(\mathbb{R}_+, \mathbb{R})$ be the space of all continuous functions from \mathbb{R}_+ to \mathbb{R}. We equip $C(\mathbb{R}_+, \mathbb{R})$ with the σ-field \mathcal{C} defined as the smallest σ-field on $C(\mathbb{R}_+, \mathbb{R})$ for which the coordinate mappings $w \mapsto w(t)$ are measurable for every $t \geq 0$.

\mathcal{C} is generated by the cylinder sets:

$$\{ w \in C(\mathbb{R}_+, \mathbb{R}) : w(t_1) \in A_1, \ldots, w(t_n) \in A_n \},$$

where $n \geq 1$, $0 \leq t_1 < t_2 < \cdots < t_n < \infty$ and $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$.
Let $C(\mathbb{R}_+, \mathbb{R})$ be the space of all continuous functions from \mathbb{R}_+ to \mathbb{R}. We equip $C(\mathbb{R}_+, \mathbb{R})$ with the σ-field \mathcal{C} defined as the smallest σ-field on $C(\mathbb{R}_+, \mathbb{R})$ for which the coordinate mappings $w \mapsto w(t)$ are measurable for every $t \geq 0$.

\mathcal{C} is generated by the cylinder sets:

$$\{ w \in C(\mathbb{R}_+, \mathbb{R}) : w(t_1) \in A_1, \ldots, w(t_n) \in A_n \},$$

where $n \geq 1$, $0 \leq t_1 < t_2 < \cdots < t_n < \infty$ and $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$.
Equipped with the metric

\[d(w_1, w_2) = \sum_{n=1}^{\infty} 2^{-n} \max_{0 \leq t \leq n} (|w_1(t) - w_2(t)| \wedge 1), \]

\(C(\mathbb{R}_+, \mathbb{R}) \) is a complete, separable metric space. This topology is the topology of uniform convergence on compact subsets of \(\mathbb{R}_+ \).

\(\mathcal{C} \) is equal to the Borel \(\sigma \)-field on the metric space \((C(\mathbb{R}_+, \mathbb{R}), d) \).
(Think about a proof!)
Equipped with the metric

\[d(w_1, w_2) = \sum_{n=1}^{\infty} 2^{-n} \max_{0 \leq t \leq n} \left(|w_1(t) - w_2(t)| \wedge 1 \right), \]

\[C(\mathbb{R}_+, \mathbb{R}) \] is a complete, separable metric space. This topology is the topology of uniform convergence on compact subsets of \(\mathbb{R}_+ \).

\(C \) is equal to the Borel \(\sigma \)-field on the metric space \((C(\mathbb{R}_+, \mathbb{R}), d)\).

(Think about a proof!)
Given a Brownian motion \(B = (B_t)_{t \geq 0} \), we can consider it as a mapping
\[
\Omega \ni \omega \mapsto (t \mapsto B_t(\omega)) \in C(\mathbb{R}_+, \mathbb{R}).
\]
This map is measurable (the inverse image of any cylinder sets are in \(\mathcal{F} \).

Definition

The Wiener measure \(W(dw) \) is the image of the probability measure \(\mathbb{P}(d\omega) \) under this mapping. For any \(A \in \mathcal{C} \),

\[
W(A) = \mathbb{P}(B. \in A).
\]
Given a Brownian motion $B = (B_t)_{t \geq 0}$, we can consider it as a mapping

$$\Omega \ni \omega \mapsto (t \mapsto B_t(\omega)) \in C(\mathbb{R}_+, \mathbb{R}).$$

This map is measurable (the inverse image of any cylinder sets are in \mathcal{F}).

Definition

The Wiener measure $W(d\omega)$ is the image of the probability measure $\mathbb{P}(d\omega)$ under this mapping. For any $A \in \mathcal{C}$,

$$W(A) = \mathbb{P}(B_\cdot \in A).$$
When $A = \{ w \in C(\mathbb{R}_+, \mathbb{R}) : w(t_0) \in A_0, w(t_1) \in A_1, \ldots, w(t_n) \in A_n \}$ with $n \geq 1$, $0 = t_0 < t_1 < t_2 < \cdots < t_n < \infty$ and $A_0, A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$, Corollary 2.4 gives

$$W(A) = \mathbb{P}(B_{t_0} \in A_0, B_{t_1} \in A_1, \ldots, B_{t_n} \in A_n)$$

$$= 1_{A_0}(0) \int_{A_1 \times \cdots \times A_n} \frac{dx_1 \cdots dx_n}{(2\pi)^{n/2} \sqrt{t_1(t_2 - t_1) \cdots (t_n - t_{n-1})}} e^{-\sum_{i=1}^{n} \frac{(x_i - x_{i-1})^2}{2(t_i - t_{i-1})}}$$

where $x_0 = 0$.

Suppose $B' = (B'_t)_{t \geq 0}$ is another Brownian motion. Then for any $A \in \mathcal{C}$,

$$\mathbb{P}'(B' \in A) = W(A) = \mathbb{P}(B_t \in A).$$
When \(A = \{ w \in C(\mathbb{R}^+, \mathbb{R}) : w(t_0) \in A_0, w(t_1) \in A_1, \ldots, w(t_n) \in A_n \} \)
with \(n \geq 1, 0 = t_0 < t_1 < t_2 < \cdots < t_n < \infty \) and \(A_0, A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R}) \),
Corollary 2.4 gives

\[
W(A) = \mathbb{P}(B_{t_0} \in A_0, B_{t_1} \in A_1, \ldots, B_{t_n} \in A_n)
= 1_{A_0}(0) \int_{A_1 \times \cdots \times A_n} \frac{dx_1 \cdots dx_n}{(2\pi)^{n/2} \sqrt{t_1(t_2 - t_1) \cdots (t_n - t_{n-1})}} e^{- \sum_{i=1}^{n} \frac{(x_i - x_{i-1})^2}{2(t_i - t_{i-1})}}
\]
where \(x_0 = 0 \).

Suppose \(B' = (B'_t)_{t \geq 0} \) is another Brownian motion. Then for any \(A \in \mathcal{C} \),

\[
\mathbb{P}'(B' \in A) = W(A) = \mathbb{P}(B \in A).
\]
Thus the probability that a given property (corresponding to a measurable subset A of $C(\mathbb{R}_+, \mathbb{R})$) holds is the same for the sample paths of B and for the sample paths of B'.

Consider now the special choice of a probability space,

$$\Omega = C(\mathbb{R}_+, \mathbb{R}), \quad \mathcal{F} = C, \quad \mathbb{P} = \mathcal{W}.$$

Then on this probability space, the canonical process (or coordinate process)

$$X_t(w) = w(t)$$

is a Brownian motion. This is called a canonical Brownian motion.
Thus the probability that a given property (corresponding to a measurable subset A of $C(\mathbb{R}_+, \mathbb{R})$) holds is the same for the sample paths of B and for the sample paths of B'.

Consider now the special choice of a probability space,

$$\Omega = C(\mathbb{R}_+, \mathbb{R}), \quad \mathcal{F} = C, \quad \mathbb{P} = \mathbb{W}.$$

Then on this probability space, the canonical process (or coordinate process)

$$X_t(w) = w(t)$$

is a Brownian motion. This is called a canonical Brownian motion.
Outline

1. General Info
2. 2.2 Continuity of Sample Paths
3. 2.3 Properties of Brownian Sample Paths.
In this section, we fix a Brownian motion \(B = (B_t)_{t \geq 0} \). For \(t \geq 0 \), we define

\[\mathcal{F}_t = \sigma(B_s : s \leq t). \]

Note that \(s \leq t \) implies \(\mathcal{F}_s \subset \mathcal{F}_t \). We also define

\[\mathcal{F}_{0+} = \cap_{s > 0} \mathcal{F}_s. \]

Theorem 2.13 (Blumenthal’s 0-1 law)

\(\mathcal{F}_{0+} \) is trivial, that is, \(\mathbb{P}(A) \in \{0, 1\} \) for every \(A \in \mathcal{F}_{0+} \).
In this section, we fix a Brownian motion $B = (B_t)_{t \geq 0}$. For $t \geq 0$, we define

$$\mathcal{F}_t = \sigma(B_s : s \leq t).$$

Note that $s \leq t$ implies $\mathcal{F}_s \subset \mathcal{F}_t$. We also define

$$\mathcal{F}_{0+} = \cap_{s>0} \mathcal{F}_s.$$

Theorem 2.13 (Blumenthal’s 0-1 law)

\mathcal{F}_{0+} is trivial, that is, $\mathbb{P}(A) \in \{0, 1\}$ for every $A \in \mathcal{F}_{0+}$.
Proof of Theorem 2.13

Let $0 < t_1 < \cdots < t_k$ and let $g : \mathbb{R}^k \to \mathbb{R}$ be a bounded continuous function. Fix $A \in \mathcal{F}_{0+}$. By continuity and the bounded convergence theorem,

$$
\mathbb{E}[1_A g(B_{t_1}, \ldots, B_{t_k})] = \lim_{\epsilon \downarrow 0} \mathbb{E}[1_A g(B_{t_1} - B_{\epsilon}, \ldots, B_{t_k} - B_{\epsilon})].
$$

If $\epsilon \in (0, t_1)$, then random variables $B_{t_1} - B_{\epsilon}, \ldots, B_{t_k} - B_{\epsilon}$ are independent of \mathcal{F}_ϵ, and thus also of \mathcal{F}_{0+}. It follows that

$$
\mathbb{E}[1_A g(B_{t_1}, \ldots, B_{t_k})] = P(A) \lim_{\epsilon \downarrow 0} \mathbb{E}[g(B_{t_1} - B_{\epsilon}, \ldots, B_{t_k} - B_{\epsilon})]
$$

$$
= P(A) \mathbb{E}[g(B_{t_1}, \ldots, B_{t_k})].
$$

Thus \mathcal{F}_{0+} is independent of $\sigma(B_{t_1}, \ldots, B_{t_k})$. Since this holds for finite collection $\{t_1, \ldots, t_k\}$ of strictly positive numbers, \mathcal{F}_{0+} is independent of $\sigma(B_t : t > 0)$. However, $\sigma(B_t : t > 0) = \sigma(B_t : t \geq 0)$. Thus \mathcal{F}_{0+} is independent of itself.
Proposition 2.14

(i) We have, a.s., for every $\varepsilon > 0$,

$$\sup_{0 \leq s \leq \varepsilon} B_s > 0, \quad \inf_{0 \leq s \leq \varepsilon} B_s < 0.$$

(ii) For every $a \in \mathbb{R}$, let $T_a = \inf\{t \geq 0 : B_t = a\}$. Then

$$a.s., \text{ for any } a \in \mathbb{R}, \quad T_a < \infty.$$

Consequently, we have a.s.

$$\limsup_{t \to \infty} B_t = \infty, \quad \liminf_{t \to \infty} B_t = -\infty.$$
Proof of Proposition 2.14

(i) Let $\epsilon_k > 0$ be a sequence strictly decreasing to 0, and let

$$A = \cap_p \left\{ \sup_{0 \leq s \leq \epsilon_p} B_s > 0 \right\}.$$

Obviously $A \in \mathcal{F}_{0+}$. On the other hand,

$$\mathbb{P}(A) = \lim_{p \to \infty} \mathbb{P}(\sup_{0 \leq s \leq \epsilon_p} B_s > 0)$$

and

$$\mathbb{P}(\sup_{0 \leq s \leq \epsilon_p} B_s > 0) \geq \mathbb{P}(B_{\epsilon_p} > 0) = \frac{1}{2},$$

which implies $\mathbb{P}(A) \geq \frac{1}{2}$. By Theorem 2.13 we have $\mathbb{P}(A) = 1$, hence

$$\text{a.s. for every } \epsilon > 0, \sup_{0 \leq s \leq \epsilon} B_s > 0.$$

The assertion about $\inf_{0 \leq s \leq \epsilon} B_s$ is obtained by replacing B by $-B$.
Proof of Proposition 2.14 (cont)

(ii) We know that

\[1 = \mathbb{P}(\sup_{0 \leq s \leq 1} B_s > 0) = \lim_{\delta \downarrow 0} \mathbb{P}(\sup_{0 \leq s \leq 1} B_s > \delta). \]

By the scale invariance property \((B^\lambda_t = \frac{1}{\lambda} B_{\lambda^2 t})\) with \(\lambda = \delta\), we see that

\[\mathbb{P}(\sup_{0 \leq s \leq 1} B_s > \delta) = \mathbb{P}(\sup_{0 \leq s \leq 1/\delta^2} B_{\delta}^\delta > 1) = \mathbb{P}(\sup_{0 \leq s \leq 1/\delta^2} B_s > 1). \]

Letting \(\delta \downarrow 0\), we get

\[\mathbb{P}(\sup_{s \geq 0} B_s > 1) = \lim_{\delta \downarrow 0} \mathbb{P}(\sup_{0 \leq s \leq 1/\delta^2} B_{\delta}^\delta > 1) = 1. \]

Then another scaling property shows that, for any \(M > 0\),

\[\mathbb{P}(\sup_{s \geq 0} B_s > M) = 1. \]
Corollary 2.15
Almost surely, the function $t \mapsto B_t$ is not monotone on any nontrivial interval.

Proof of Corollary 2.15
By Proposition 2.14(i) and the simple Markov property, we get that a.s. for any $q \in \mathbb{Q}_+$, for every $\epsilon > 0,$

$$\sup_{q \leq t \leq q + \epsilon} B_t > B_q, \quad \inf_{q \leq t \leq q + \epsilon} B_t < B_q.$$

The desired property follows.
Corollary 2.15

Almost surely, the function $t \mapsto B_t$ is not monotone on any nontrivial interval.

Proof of Corollary 2.15

By Proposition 2.14(i) and the simple Markov property, we get that a.s. for any $q \in \mathbb{Q}_+$, for every $\epsilon > 0$,

$$\sup_{q \leq t \leq q + \epsilon} B_t > B_q, \quad \inf_{q \leq t \leq q + \epsilon} B_t < B_q.$$

The desired property follows.
Proposition 2.16

Let $0 = t_0^n < t_1^n < \cdots < t^n_{p_n} = t$ be a sequence of partitions of $[0, t]$ whose mesh tends to 0 (i.e., $\sup_{1 \leq j \leq p_n} (t^n_j - t^n_{j-1}) = 0$ as $n \to \infty$). Then

$$\lim_{n \to \infty} \sum_{j=1}^{p_n} (B^n_{t_j} - B^n_{t_{j-1}})^2 = t$$

in L^2.

Proof of Proposition 2.16

This is an immediate consequence of Proposition 1.14, writing $B^n_{t_j} - B^n_{t_{j-1}} = G((t^n_{j-1}, t^n_j))$, where G is the Gaussian white noise associated with B.
Proposition 2.16

Let $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = t$ be a sequence of partitions of $[0, t]$ whose mesh tends to 0 (i.e., $\sup_{1 \leq j \leq p_n} (t_j^n - t_{j-1}^n) = 0$ as $n \to \infty$). Then

$$\lim_{n \to \infty} \sum_{j=1}^{p_n} (B_{t_j^n} - B_{t_{j-1}^n})^2 = t$$

in L^2.

Proof of Proposition 2.16

This is an immediate consequence of Proposition 1.14, writing $B_{t_j^n} - B_{t_{j-1}^n} = G((t_{j-1}^n, t_j^n))$, where G is the Gaussian white noise associated with B.
If $a < b$ and f a real-valued function defined on $[a, b]$, the function f is said to have infinite variation if the supremum of $\sum_{j=1}^{p} |f(t_j) - f(t_{j-1})|$, over all partitions $a = t_0 < t_1 < \cdots < t_p = b$, is infinite.

Corollary 2.17

Almost surely, the function $t \mapsto B_t$ is of infinite variation on any non-trivial interval.
If $a < b$ and f a real-valued function defined on $[a, b]$, the function f is said to have infinite variation if the supremum of $\sum_{j=1}^{p} |f(t_j) - f(t_{j-1})|$, over all partitions $a = t_0 < t_1 < \cdots < t_p = b$, is infinite.

Corollary 2.17

Almost surely, the function $t \mapsto B_t$ is of infinite variation on any non-trivial interval.
Proof of Corollary 2.17

From the simple Markov property, it suffices to consider the interval
\([0, t]\) for some fixed \(t > 0\). Using Proposition 2.16 and extracting a
subsequence if necessary, we may assume that the convergence in
Proposition 2.16 holds a.s. Now note that

\[
\sum_{j=1}^{p_n} (B_{t_j^n} - B_{t_{j-1}^n})^2 \leq \left(\sup_{1 \leq j \leq p_n} |B_{t_j^n} - B_{t_{j-1}^n}| \right) \sum_{j=1}^{p_n} |B_{t_j^n} - B_{t_{j-1}^n}|.
\]

The lhs tends to 0, the first factor on the rhs also goes to 0, so the
2nd factor on the rhs must go to \(\infty\).

Thus it is impossible to define \(\int_0^t f(s) dB_s\) as a pathwise
Lebesgue-Stieltjes integral.
From the simple Markov property, it suffices to consider the interval
[0, t] for some fixed $t > 0$. Using Proposition 2.16 and extracting a
subsequence if necessary, we may assume that the convergence in
Proposition 2.16 holds a.s. Now note that

$$\sum_{j=1}^{p_n} (B_{t_j} - B_{t_{j-1}})^2 \leq \left(\sup_{1 \leq j \leq p_n} |B_{t_j} - B_{t_{j-1}}| \right) \sum_{j=1}^{p_n} |B_{t_j} - B_{t_{j-1}}|.$$

The lhs tends to 0, the first factor on the rhs also goes to 0, so the
2nd factor on the rhs must go to ∞.

Thus it is impossible to define $\int_0^t f(s)dB_s$ as a pathwise
Lebesgue-Stieltjes integral.