Sketch of solutions to HW6

Chapter 4

64 We know that if \(X_0 = 1 \), then \(E[X_n] = \mu^n \). Thus the expected number of individuals that ever exist in this population is
\[
\sum_{n=0}^{\infty} \mu^n = \frac{1}{1 - \mu}.
\]

If \(X_0 = n \), by using independence, we see that in this case the expected number of individuals that ever exist in this population is \(n/(1 - \mu) \).

65. Recall that \(\pi_0 = \lim_{n \to \infty} P(X_n = 0|X_0 = 1) \).

Suppose that \(\pi \) is a positive solution to the equation
\[
\pi = \sum_{j=0}^{\infty} \pi^j P_j,
\]
then \(\pi > 0 = P(X_0 = 0|X_0 = 1) \). Assume that \(\pi \geq P(X_{n-1} = 0|X_0 = 1) \). Then
\[
P(X_n = 0|X_0 = 1) = \sum_{j=0}^{\infty} P(X_n = 0|X_1 = j)P_j
\]
\[
= \sum_{j=0}^{\infty} P(X_n = 0|X_1 = 1)^j P_j
\]
\[
= \sum_{j=0}^{\infty} P(X_{n-1} = 0|X_0 = 1)^j P_j
\]
\[
\leq \sum_{j=0}^{\infty} \pi^j P_j = \pi.
\]
So we have proved by induction that \(\pi \geq P(X_n = 0|X_0 = 1) \) for all \(n \geq 0 \). Thus \(\pi \geq \pi_0 \).

That is, \(\pi_0 \) is the smallest positive solution of
\[
\pi = \sum_{j=0}^{\infty} \pi^j P_j.
\]

66. (a) Solving the equation
\[
\pi + \frac{1}{4} + \pi^2 \frac{3}{4},
\]
we get \(\pi = \frac{1}{3} \) or \(\pi = 1 \). Thus \(\pi_0 = \frac{1}{3} \).

(b) In this case the mean number of offspring \(\mu = 1 \), so \(\pi_0 = 1 \).

(c) Solving the equation
\[
\pi = \frac{1}{6} + \pi \frac{1}{2} + \pi^3 \frac{1}{3},
\]
we get only two positive solutions which are \((\sqrt{2} - 1)/2\) and 1. So \(\pi_0 = (\sqrt{3} - 1)/2\).

70. (a) \(P_{0,1} = P_{m,m-1} = 1\). For \(i = 1, \ldots, m - 1\),

\[
P_{i,i} = \frac{2i(m-i)}{m^2} \quad P_{i,i+1} = \frac{(m-i)^2}{m^2} \quad P_{i,i-1} = \frac{i^2}{m^2}.
\]

(c) From the system

\[
\begin{align*}
\pi_0 &= \pi_1 \frac{1}{m^2} \\
\pi_1 &= \pi_0 + \pi_1 \frac{2(m-1)}{m^2} + \pi_2 \frac{2^2}{m^2} \\
\pi_2 &= \pi_1 \frac{(m-1)^2}{m^2} + \pi_2 \frac{2 \cdot 2 \cdot (m-2)}{m^2} + \pi_3 \frac{3^2}{m^3} \\
&\vdots \\
\pi_m &= \pi_{m-1} \frac{1}{m^2} \\
\pi_0 + \pi_1 + \cdots + \pi_m &= 1
\end{align*}
\]

we get

\[
\begin{align*}
\pi_1 &= \pi_0 m^2 = \pi_0 \left(\frac{m}{1} \right)^2 \\
\pi_2 &= \pi_1 \frac{(m-1)^2}{2^2} = \pi_0 m^2 \frac{(m-1)^2}{2^2} = \pi_0 \left(\frac{m}{2} \right)^2 \\
\pi_3 &= \pi_2 \frac{(m-2)^2}{3^2} = \pi_0 m^2 \frac{(m-1)^2}{2^2} \frac{(m-2)^2}{3^2} = \pi_0 \left(\frac{m}{3} \right)^2 \\
&\vdots \\
\pi_i &= \pi_0 m^2 \frac{(m-1)^2}{2^2} \frac{(m-2)^2}{3^2} \cdots \frac{(m-i+1)^2}{i^2} = \pi_0 \left(\frac{m}{i} \right)^2 \\
&\vdots \\
\pi_m &= \pi_0 = \pi_0 \left(\frac{m}{m} \right)^2
\end{align*}
\]

and

\[
1 = \pi_0 \sum_{i=0}^{m} \left(\frac{m}{i} \right)^2 = \pi_0 \left(\frac{2m}{m} \right).
\]

Thus

\[
\pi_0 = \frac{1}{\left(\frac{2m}{m} \right)}
\]
and
\[\pi_i = \left(\frac{m_i}{2m} \right)^2 \quad i = 1, \cdots, m. \]

73. It is straightforward to check that \(\pi_i P_{ij} = \pi_j P_{ji} \). For instance \(\pi_0 P_{01} = \frac{1}{5} \frac{1}{2} = \frac{1}{10} \) and \(\pi_1 P_{10} = \frac{2}{5} \frac{1}{4} = \frac{1}{10} \).

Chapter 5

1. (a) \(P(T > \frac{1}{2}) = e^{-1} \).
 (b) By using the memoryless property,
 \[P(T > 12 | T > 12) = P(T > \frac{1}{2}) = e^{-1}. \]

2. Let \(X_1 \) be the remaining service time of the customer who is being served. Let \(X_i, i = 2, 3, 4, 5 \), be the service times of the customers waiting in line. Let \(X_6 \) be your service time. Then \(X_1, \ldots, X_6 \) are exponential random variables with parameter \(\mu \). The time you spend in the bank is \(X_1 + \cdots + X_6 \). So your expected amount of time spent in the bank is \(6/\mu \).

3. By using the memoryless property, (a) is the only correct answer.

4. (a) 0.
 (b) Let \(E \) be the event that \(A \) is still in the post office after the other two have left. The only scenario for this to happen is when the service time of \(B \) is 1, the service time of \(C \) is 1 and the service time of \(A \) is 3. So the answer is 3^{-3}.
 (c) Let \(X_1 \) be the service time of \(A \), \(X_2 \) the service of \(B \), \(X_3 \) the service time of \(C \). Then \(X_1, X_2 \) and \(X_3 \) are independent exponential random variables with parameter \(\mu \), and \(X_2 + X_3 \) is a gamma random variable with parameters \((2, \mu) \). Thus
 \[P(X_1 > X_2 + X_3) = \int_0^\infty P(X_1 > x)P(X_2 + X_3 = x)(\mu x)e^{-\mu x}dx \]
 \[= \int_0^\infty P(X_1 > x)(\mu x)e^{-\mu x}dx = \int_0^\infty P(X_1 > x)(\mu x)e^{-2\mu x}dx = \frac{1}{4}. \]