11th Homework Set — Solutions
Chapter 8

Problem 8.4 (a) \(P(\sum_{i=1}^{20} X_i > 15) \leq \frac{20}{15} \).

(b)
\[
P(\sum_{i=1}^{20} X_i > 15) = P(\sum_{i=1}^{20} X_i > 15.5) \approx P(Z > \frac{15.5 - 20}{\sqrt{20}}) = P(Z > -1.006) \approx .8428.
\]

Problem 8.5 Let \(X_i \) be the \(i \)-th round-off error, then
\[
E(\sum_{i=1}^{50} X_i) = 0, \quad \text{Var}(\sum_{i=1}^{50} X_i) = \frac{50}{12}.
\]
Hence by the central limit theorem
\[
P\left(\sum_{i=1}^{50} X_i > 3\right) \approx P(|Z| > \frac{3}{\sqrt{12/50}}) = 2P(Z > 1.47) = .1416.
\]

Problem 8.7 If we let \(X_i \) be the lifetime of the \(i \)-th light bulb, then the desired probability is
\[
P\left(\sum_{i=1}^{100} X_i > 525\right).
\]
It follows from the central limit theorem that \(\sum_{i=1}^{100} X_i \) is approximately a normal random variable with mean 500 and variance 2500. Consequently the desired probability is equal to
\[
P(Z > \frac{525 - 500}{50}) = P(Z > .05) = .3085.
\]

Problem 8.8 If we let \(X_i \) be the lifetime of the \(i \)-th light bulb and \(R_i \) be the time to replace the \(i \)-th light bulb, then the desired probability is
\[
P\left(\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i \leq 550\right).
It follows from the central limit theorem that $\sum_{i=1}^{100} X_i$ is approximately a normal random variable with mean 500 and variance 2500 and that $\sum_{i=1}^{99} R_i$ is approximately a normal random variable with mean 24.75 and variance 99/48, therefore $\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i$ is approximately a normal random variable with mean 524.75 and variance 2502.02. Consequently the desired probability is equal to

$$P(Z \leq \frac{550 - 524.75}{\sqrt{2502.02}}) = P(Z \leq .505) = .693.$$

Problem 8.15 For $i = 1, \ldots, 10000$, let X_i the claim amount of the i-th policyholder. Then $E[X_i] = 240$ and $\text{Var}(X_i) = 800^2$. Thus

$$P(\sum_{i=1}^{10000} X_i > 2700000)$$

$$= P\left(\frac{\sum_{i=1}^{10000} X_i - 2400000}{80000} > \frac{2700000 - 2400000}{80000}\right)$$

$$\approx 1 - \Phi(3.75) \approx 0.$$