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HW9 is due Friday, 11/05, before the end of class. Yo can submit your
HW9 via the course Moodle page. Make make that your HW is
uploaded successfully

Solution to HW8 is on my homepage.
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Now we are going to use the formula

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi) +
∑
i 6=j

Cov(Xi ,Xj)

=
n∑

i=1

Var(Xi) + 2
∑
i<j

Cov(Xi ,Xj).

to find the variance of some complicated random variables.

Example 8

A group of N people throw their hats into the center of the room. The
hats are mixed up, and each person randomly selects a hat. Let X be
the number of people who get their own hats. Find Var(X ).
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For i = 1, . . . ,N, let Xi = 1 if the i-th man gets his own hat and Xi = 0
otherwise. Then X = X1 + · · ·+ XN . Note that

E [Xi ] = P(Xi = 1) =
1
N
, Var(Xi) =

1
N

(
1− 1

N

)
.

Now let’s find Cov(Xi ,Xj) for i 6= j . XiXj is also a Bernoulli random
variable.

E [XiXj ] = P(XiXj = 1) = P(Xi = 1,Xj = 1) =
1

N(N − 1)
.

Thus
Cov(Xi ,Xj) =

1
N(N − 1)

− 1
N2 .



General Info 7.4 Covariance, variance of sums and correlations

For i = 1, . . . ,N, let Xi = 1 if the i-th man gets his own hat and Xi = 0
otherwise. Then X = X1 + · · ·+ XN . Note that

E [Xi ] = P(Xi = 1) =
1
N
, Var(Xi) =

1
N

(
1− 1

N

)
.

Now let’s find Cov(Xi ,Xj) for i 6= j . XiXj is also a Bernoulli random
variable.

E [XiXj ] = P(XiXj = 1) = P(Xi = 1,Xj = 1) =
1

N(N − 1)
.

Thus
Cov(Xi ,Xj) =

1
N(N − 1)

− 1
N2 .



General Info 7.4 Covariance, variance of sums and correlations

Var(X ) = Var(
N∑

i=1

Xi)

=
N∑

i=1

Var(Xi) +
∑
i 6=j

Cov(Xi ,Xj)

= N · 1
N

(
1− 1

N

)
+ N(N − 1)

(
1

N(N − 1)
− 1

N2

)
= 1.

Example 9

If n balls are randomly selected, without replacement, from a box
containing N (N > n) balls, of which m are white. Let X be the
number of white balls selected. Find Var(X ).
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For i = 1, . . . ,m, let Yi = 1 if the i-th white ball is among the selected.
Then X = Y1 + · · ·+ Ym. Note that

E [Yi ] =

(N−1
n−1

)(N
n

) =
n
N
, Var(Yi) =

n
N

(
1− n

N

)
.

Now let’s find Cov(Yi ,Yj) for i 6= j . YiYj is also a Bernoulli random
variable.

E [YiYj ] = P(Yi = 1,Yj = 1) =

(N−2
n−2

)(N
n

) =
n(n − 1)
N(N − 1)

.

Thus

Cov(Yi ,Yj) =
n(n − 1)
N(N − 1)

− n2

N2 .
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Var(X ) = Var(
m∑

i=1

Yi)

=
m∑

i=1

Var(Yi) +
∑
i 6=j

Cov(Yi ,Yj)

= m
n
N

(
1− n

N

)
+ m(m − 1)

(
n(n − 1)
N(N − 1)

− n2

N2

)
.

Example 10

n balls are randomly distributed into r boxes (so that each ball is
equally likely to go to any of the r boxes). Let X be the number of
empty boxes. Find Var(X ).
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For i = 1, . . . , r , let Xi = 1 if box number i is empty and Xi = 0
otherwise. Then X = X1 + · · ·+ Xr . Note that for i = 1, . . . , r ,

E [Xi ] = P(Xi = 1) =
(

r − 1
r

)n

, Var(Xi) =

(
r − 1

r

)n (
1−

(
r − 1

r

)n)
.

Now let’s find Cov(Xi ,Xj) for i 6= j . XiXj is also a Bernoulli random
variable.

E [XiXj ] = P(Xi = 1,Xj = 1) =
(

r − 2
r

)n

.

Thus

Cov(Xi ,Xj) =

(
r − 2

r

)n

−
(

r − 1
r

)2n

.
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Var(X ) = Var(
r∑

i=1

Xi)

=
r∑

i=1

Var(Xi) +
∑
i 6=j

Cov(Xi ,Xj)

= r
(

r − 1
r

)n (
1−

(
r − 1

r

)n)
+ r(r − 1)

((
r − 2

r

)n

−
(

r − 1
r

)2n
)
.

Example 11

There are n types of coupons. Each newly obtained coupon is,
independently, equally like to be any of the n types. Let X be the
number of distinct types contained in a collection of k coupons. Find
Var(X ).
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For i = 1, · · · ,n, let Xi = 1 if there is at least one type i coupon in the
collection of k coupons and Xi = 0 otherwise. Then X1 + · · ·+ Xn is
the number of distinct types in the collection of k coupons.

For i = 1, · · · ,n,

P(Xi = 0) =
(

1− 1
n

)k

, P(Xi = 1) = 1−
(

1− 1
n

)k

.

For i 6= j ,

P(XiXj = 0) = P(Xi = 0) + P(Xj = 0)− P(Xi = 0,Xj = 0)

= 2
(

1− 1
n

)k

−
(

1− 2
n

)k

,

P(XiXj = 1) = 1− 2
(

1− 1
n

)k

+

(
1− 2

n

)k

.
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Thus

E [Xi ] = 1−
(

1− 1
n

)k

, Var(Xi) =

(
1− 1

n

)k
(

1−
(

1− 1
n

)k
)
,

and

Cov(Xi ,Xj) = 1− 2
(

1− 1
n

)k

+

(
1− 2

n

)k

−

(
1−

(
1− 1

n

)k
)2

.
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Consequently

E [X1 + · · ·+ Xn] = n

(
1−

(
1− 1

n

)k
)

and

Var(X1 + · · ·+ Xn) = n
(

1− 1
n

)k
(

1−
(

1− 1
n

)k
)

+ n(n − 1)

1− 2
(

1− 1
n

)k

+

(
1− 2

n

)k

−

(
1−

(
1− 1

n

)k
)2
 .
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Example 12

10 couples are randomly seated at a round table. Let X be the
number of couples that are seated together. Find Var(X ).

For i = 1, . . . ,10, let Xi = 1 if the i-the couple are seated together.
Then X = X1 + · · ·+ X10. For i = 1, . . . ,10,

P(Xi = 1) =
2(18)!
(19)!

=
2

19
.

For i 6= j ,

P(Xi = 1,Xj = 1) =
22(17)!
(19)!

=
4

19 · 18
.
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Thus for i = 1, . . . ,10,

E [Xi ] =
2

19
, Var(Xi) =

2
19

17
19

.

For i 6= j ,

Cov(Xi ,Xj) =
4

19 · 18
− 4

192 .

Var(X ) = Var(
10∑

i=1

Xi)

=
10∑

i=1

Var(X1) +
∑
i 6=j

Cov(Xi ,Xj)

=
20
19

17
19

+ 90
(

4
19 · 18

− 4
192

)
.
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