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General Info 6.3 Sums of independent random variables

HW7 is due today before the end of class time . Please submit your
HW7 via the course Moodle page.

Solution to HW7 will be on my homepage this weekend.
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General Info 6.3 Sums of independent random variables

Last time, we have seen that, if X and Y are independent abs. cont.
random variables with density fX and fY respectively, then the density
of Z = X + Y is

fZ (z) =

∫ ∞
−∞

fX (x)fY (z − x)dx

We also have
fZ (z) =

∫ ∞
−∞

fX (z − y)fY (y)dy .

Now let’s suppose that X and Y are independent positive abs. cont.
random variables with density fX and fY respectively, then Z = X + Y
is a also a positive random variable and its density is
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fZ (z) =

{∫ z
0 fX (x)fY (z − x)dx , z > 0,

0, otherwise.

We also have

fZ (z) =

{∫ z
0 fX (z − y)fY (y)dy , z > 0,

0, otherwise.

Proposition

Suppose X and Y are independent random variables.
(i) If X and Y are Gamma random variables with parameters (α, λ)

and (β, λ) respectively, then X + Y is a Gamma random variable
with parameters (α + β, λ).

(ii) If X and Y are normal random variables with parameters (µ1, σ
2
1)

and (µ2, σ
2
2) respectively, then X + Y is a normal random variable

(µ1 + µ2, σ
2
1 + σ2

2).
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Let’s prove (i). For any z > 0,

fX+Y (z) =
1

Γ(α)Γ(β)

∫ z

0
λe−λx (λx)α−1λe−λ(z−x)(λ(z − x))β−1dx

=
λe−λz

Γ(α)Γ(β)
λα+β−1

∫ z

0
xα−1(z − x)β−1dx

=
λe−λz

Γ(α)Γ(β)
(λz)α+β−1

∫ 1

0
uα−1(1− u)β−1du, x = zu,

=
λe−λz

Γ(α)Γ(β)
(λz)α+β−1B(α, β)

=
1

Γ(α + β)
λe−λz(λz)α+β−1.



General Info 6.3 Sums of independent random variables

Example 1

A basketball team will play a 44-game season. 26 of these games are
against class A teams and 18 are are against class B teams.
Suppose that the team will win each game against a class A team
with probability .4 and will win each game against a class B team with
probability .7. Suppose also that the results of different games are
independent. Approximate the probability that
(a) the team wins 25 or more games;
(b) the team will win more games against class A teams than it does

agains class B teams.

Let XA and XB denote respectively the number of games the teams
wins are against class A teams and are against class B teams. Then
XA and XB are independent binomial random variables with
parameters (26, .4) and (18, .7) respectively.
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E [XA] = 26(.4) = 10.4, Var(XA) = 26(.4)(.6) = 6.24
E [XB] = 18(.7) = 12.6, Var(XB) = 18(.7)(.3) = 3.78.

By the central limit theorem, XA is approximately normal with
parameters (10.4,6.24) and XB is approximately normal with
parameters (12.6,3.78).

By the Proposition above, XA + XB is approximately normal with
parameters (23,10.02) since XA and XB are independent. Thus

P(XA + XB ≥ 25) = P(XA + XB ≥ 24.5)

= P
(

XA + XB − 23√
10.02

≥ 24.5− 23√
10.02

)
= P

(
XA + XB − 23√

10.02
≥ .4739

)
≈ 1− Φ(.4739) ≈ .3178.
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Since XA and XB are independent, by the Proposition above, XA − XB
is approximately normal with parameters (−2.2,10.02). Hence

P(XA − XB ≥ 1) = P(XA − XB ≥ .5)

= P
(

XA − XB + 2.2√
10.02

≥ .5 + 2.2√
10.02

)
= P

(
XA − XB + 2.2√

10.02
≥ .8530

)
≈ 1− Φ(.8530) ≈ .1968.

Example 2

Suppose that X and Y are independent standard normal random
variables. Find the density of Z = X 2 + Y 2.
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We know that X 2 and Y 2 are independent Gamma random variables
with parameters ( 1

2 ,
1
2 ). Thus X 2 + Y 2 is a Gamma random variables

with parameters (1, 1
2 ), that is, an exponential random variable with

parameter 1/2.

Example 3

Suppose that X and Y are independent random variables, both
uniformly distributed on (0,1). Find the density of Z = X + Y .

Applying the formula directly is not easy. We look for the distribution
of Z first.
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X + Y takes values in (0,2). For z ∈ (0,1],

P(Z ≤ z) = P(X + Y ≤ z) =
z2

2
.

For z ∈ (1,2),

P(Z ≤ z) = P(X + Y ≤ z) = 1− (2− z)2

2
.
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Thus the density of Z is

fZ (z) =


z, 0 ≤ z ≤ 1,
2− z, 1 < z < 2,
0, otherwise.

Suppose that X and Y are independent discrete random variables
with mass functions pX (·) and pY (·) respectively. Find the mass
function of Z = X + Y .
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For any z,

pZ (z) = P(X + Y = z) =
∑

x

P(X + Y = z,X = x)

=
∑

x

P(X = x ,Y = z − x) =
∑

x

P(X = x)P(Y = z − x)

=
∑

x

pX (x)pY (z − x).

We also have
pZ (z) =

∑
y

pX (z − y)pY (y).
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If X and Y are integer-valued, then for any integer z,

pX+Y (z) =
∞∑

x=−∞
pX (x)pY (z − x).

If X and Y are non-negative integer-valued, then for any non-negative
integer z,

pX+Y (z) =
z∑

x=0

pX (x)pY (z − x).

If X and Y are positive integer-valued, then X + Y takes values
2,3, . . . . For z = 2,3, . . . ,

pX+Y (z) =
z−1∑
x=1

pX (x)pY (z − x).
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Proposition

Suppose that X and Y are independent random variables.
(i) If X is a binomial random variable with parameters (m,p), and Y

is a binomial random variable with parameters (n,p), then X + Y
is a binomial random variable with parameters (m + n,p);

(ii) If X is a Poisson random variables with parameter λ1, and Y is a
Poisson random variables with parameter λ2, then X + Y is a
Poisson random variables with parameter λ1 + λ2;

(iii) If X is a negative binomial random variable with parameters
(r1,p), and Y is a negative binomial random variable with
parameters (r2,p), then X + Y is a negative binomial random
variable with parameters (r1 + r2,p).

I will only give the proof of (ii).
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For any z = 0,1, . . . ,

pX+Y (z) =
z∑

x=0

e−λ1
λx

1
x!

e−λ2
λz−x

2
(z − x)!

= e−(λ1+λ2)
(λ1 + λ2)z

z!

z∑
x=0

(
z
x

)(
λ1

λ1 + λ2

)x (
λ2

λ1 + λ2

)z−x

= e−(λ1+λ2)
(λ1 + λ2)z

z!
.

Example 4

Suppose that X and Y are independent geometric random variables
with a common parameter p. Find (a) the mass function of min(X ,Y );
(b) P(min(X ,Y ) = X ) = P(Y ≥ X ).
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min(X ,Y ) takes only positive integer values. For z = 1,2, . . . ,

P(min(X ,Y ) > z) = P(X > z,Y > z) = P(X > z)P(Y > z)

= (1− p)2z = (1− (2p − p2))z .

Thus min(X ,Y ) is a geometric random variable with parameter
2p − p2.

P(Y ≥ X ) =
∞∑

x=1

P(X = x ,Y ≥ X ) =
∞∑

x=1

P(X = x ,Y ≥ x)

=
∞∑

x=1

P(X = x)P(Y ≥ x) =
∞∑

x=1

p(1− p)x−1(1− p)x−1

= p
∞∑

x=1

(1− (2p − p2))x−1 =
p

2p − p2 =
1

2− p
.
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Suppose that X and Y are independent random variables such that

P(X = i) = P(Y = i) =
1

100
, i = 1, . . .100.

Find (a) P(X ≥ Y ); (b) P(X = Y ).

P(X ≥ Y ) =
100∑
y=1

P(X ≥ Y ,Y = y) =
100∑
y=1

P(X ≥ y)P(Y = y)

=
1

1002

100∑
y=1

(101− y) =
1

1002

100∑
i=1

i =
101
200

.

P(X = Y ) =
100∑
y=1

P(X = x ,Y = X ) =
100∑
y=1

P(X = x ,Y = x)

=
100∑
y=1

P(X = x)P(Y = x) =
1

100
.
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