Math 461 Fall 2021

Renming Song

University of Illinois at Urbana-Champaign

October 20, 2021
Outline
Outline

1. General Info
2. 6.2 Independent random variable
3. 6.3 Sums of independent random variables.
HW7 is due Friday, 10/22, before the end of class time. Please submit your HW7 via the course Moodle page.

Solution to HW6 is on my homepage now.
HW7 is due Friday, 10/22, before the end of class time. Please submit your HW7 via the course Moodle page.

Solution to HW6 is on my homepage now.
Outline

1. General Info

2. 6.2 Independent random variable

3. 6.3 Sums of independent random variables.
Two random variables X and Y are said to be independent if for any two subsets A and B of \mathbb{R},

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

It can be shown that X and Y are independent if and only if

$$F(x, y) = F_X(x)F_Y(y), \quad (x, y) \in \mathbb{R}^2.$$
Two random variables X and Y are said to be independent if for any two subsets A and B of \mathbb{R},

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

It can be shown that X and Y are independent if and only if

$$F(x, y) = F_X(x)F_Y(y), \quad (x, y) \in \mathbb{R}^2.$$
It can be shown if X and Y are discrete random variables with joint mass function $p(\cdot, \cdot)$, then X and Y are independent if and only if
\[p(x, y) = p_X(x)p_Y(y), \quad (x, y) \in \mathbb{R}^2. \]

It can be shown if X and Y are jointly absolutely continuous with joint density $f(\cdot, \cdot)$, then X and Y are independent if and only if
\[f(x, y) = f_X(x)f_Y(y), \quad (x, y) \in \mathbb{R}^2. \]
It can be shown if X and Y are discrete random variables with joint mass function $p(\cdot, \cdot)$, then X and Y are independent if and only if

$$p(x, y) = p_X(x)p_Y(y), \quad (x, y) \in \mathbb{R}^2.$$

It can be shown if X and Y are jointly absolutely continuous with joint density $f(\cdot, \cdot)$, then X and Y are independent if and only if

$$f(x, y) = f_X(x)f_Y(y), \quad (x, y) \in \mathbb{R}^2.$$
Example 2

Suppose that the number of people entering a certain post office on a given day is a Poisson random variable with parameter $\lambda > 0$. Assume that each person entering the post office is male with probability p and female with probability $1 - p$, independent of all others. Show that the number of males and the number of females entering the post office on a given day are independent Poisson random variables with parameters λp and $\lambda (1 - p)$ respectively.

Let X and Y be the number of males and the number of females entering the post office on a given day respectively. X and Y are non-negative integer-valued random variables.
Example 2

Suppose that the number of people entering a certain post office on a given day is a Poisson random variable with parameter $\lambda > 0$. Assume that each person entering the post office is male with probability p and female with probability $1 - p$, independent of all others. Show that the number of males and the number of females entering the post office on a given day are independent Poisson random variables with parameters λp and $\lambda (1 - p)$ respectively.

Let X and Y be the number of males and the number of females entering the post office on a given day respectively. X and Y are non-negative integer-valued random variables.
For any non-negative integers i and j,

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j)$$

$$= \binom{i + j}{i} p^i (1 - p)^j e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$$

$$= e^{-\lambda p} \frac{(\lambda p)^i}{i!} e^{-\lambda (1-p)} \frac{\lambda (1-p)^j}{j!}.$$

Hence

$$P(X = i) = e^{-\lambda p} \frac{(\lambda p)^i}{i!} \sum_{j=0}^{\infty} e^{-\lambda (1-p)} \frac{\lambda (1-p)^j}{j!} = e^{-\lambda p} \frac{(\lambda p)^i}{i!}.$$

Similarly

$$P(Y = j) = e^{-\lambda (1-p)} \frac{(\lambda (1-p))^j}{j!}.$$

Therefore X and Y are independent Poisson random variables with parameters λp and $\lambda (1 - p)$ respectively.
Example 3

A man and a woman decide to meet at a certain location. If each of them independently arrives at a time uniformly distributed between noon and 1 pm. Find the probability that the first to arrive needs to wait no more than 10 minutes.
Example 3

A man and a woman decide to meet at a certain location. If each of them independently arrives at a time uniformly distributed between noon and 1 pm. Find the probability that the first to arrive needs to wait no more than 10 minutes.

Area of shaded region

$$= (60)^2 - (50)^2$$
The answer is
\[
\frac{60^2 - 50^2}{60^2} = \frac{11}{36}.
\]

Proposition

(i) Suppose that \(X\) and \(Y\) are discrete with joint mass function \(p(\cdot, \cdot)\). Then \(X\) and \(Y\) are independent if and only if
\[
p(x, y) = g(x)h(y), \quad (x, y) \in \mathbb{R}^2
\]
for some functions \(g\) and \(h\) on \(\mathbb{R}\).

(ii) Suppose that \(X\) and \(Y\) are jointly abs. cont. with joint density \(f(\cdot, \cdot)\). Then \(X\) and \(Y\) are independent if and only if
\[
f(x, y) = g(x)h(y), \quad (x, y) \in \mathbb{R}^2,
\]
for some functions \(g\) and \(h\) on \(\mathbb{R}\).
The answer is \[
\frac{60^2 - 50^2}{60^2} = \frac{11}{36}.
\]

Proposition

(i) Suppose that X and Y are discrete with joint mass function $p(\cdot, \cdot)$. Then X and Y are independent if and only if

\[p(x, y) = g(x)h(y), \quad (x, y) \in \mathbb{R}^2 \]

for some functions g and h on \mathbb{R}.

(ii) Suppose that X and Y are jointly abs. cont. with joint density $f(\cdot, \cdot)$. Then X and Y are independent if and only if

\[f(x, y) = g(x)h(y), \quad (x, y) \in \mathbb{R}^2, \]

for some functions g and h on \mathbb{R}.
Example 4

The joint density of X and Y is

$$f(x, y) = \begin{cases} 10e^{-(2x+5y)}, & x > 0, y > 0 \\ 0, & \text{otherwise.} \end{cases}$$

If

$$g(x) = \begin{cases} 10e^{-2x}, & x > 0, \\ 0, & \text{otherwise,} \end{cases} \quad h(y) = \begin{cases} e^{-5y}, & y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$f(x, y) = g(x)h(y), \quad (x, y) \in \mathbb{R}^2.$$

Thus X and Y are independent.
Example 4

The joint density of X and Y is

$$f(x, y) = \begin{cases} 10e^{-(2x+5y)}, & x > 0, y > 0 \\ 0, & \text{otherwise} \end{cases}$$

If

$$g(x) = \begin{cases} 10e^{-2x}, & x > 0, \\ 0, & \text{otherwise}, \end{cases} \quad h(y) = \begin{cases} e^{-5y}, & y > 0, \\ 0, & \text{otherwise}. \end{cases}$$

Then

$$f(x, y) = g(x)h(y), \quad (x, y) \in \mathbb{R}^2.$$

Thus X and Y are independent.
Example 5

The joint density of X and Y is

$$f(x, y) = \begin{cases} 24xy, & x \in (0, 1), y \in (0, 1), x + y \in (0, 1) \\ 0, & \text{otherwise.} \end{cases}$$
Example 5

The joint density of X and Y is

$$f(x, y) = \begin{cases} 24xy, & x \in (0, 1), y \in (0, 1), x + y \in (0, 1) \\ 0, & \text{otherwise.} \end{cases}$$
Both X and Y take values in $(0, 1)$. For $x \in (0, 1)$,

$$f_X(x) = \int_0^{1-x} 24xy dy = 12x(1 - x)^2.$$

Similarly, for $y \in (0, 1)$,

$$f_Y(y) = 12y(1 - y)^2.$$

X and Y are not independent!

The concept of independent random variables can be extended to more than 2 random variables.
Both \(X \) and \(Y \) take values in \((0, 1)\). For \(x \in (0, 1) \),

\[
f_X(x) = \int_0^{1-x} 24xy\,dy = 12x(1 - x)^2.
\]

Similarly, for \(y \in (0, 1) \),

\[
f_Y(y) = 12y(1 - y)^2.
\]

\(X \) and \(Y \) are not independent!

The concept of independent random variables can be extended to more than 2 random variables.
n random variables X_1, \ldots, X_n are said to be independent if for any subsets A_1, \ldots, A_n of \mathbb{R},

$$P(X_1 \in A_1, \ldots X_n \in A_n) = \prod_{i=1}^{n} P(X_i \in A_i).$$

It can be shown that n random variables X_1, \ldots, X_n with joint distribution function $F(\cdot, \ldots, \cdot)$ are independent if and only if

$$F(x_1, \ldots, x_n) = \prod_{i=1}^{n} F_{X_i}(x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.$$
n random variables X_1, \ldots, X_n are said to be independent if for any subsets A_1, \ldots, A_n of \mathbb{R},

$$P(X_1 \in A_1, \ldots, X_n \in A_n) = \prod_{i=1}^{n} P(X_i \in A_i).$$

It can be shown that n random variables X_1, \ldots, X_n with joint distribution function $F(\cdot, \ldots, \cdot)$ are independent if and only if

$$F(x_1, \ldots, x_n) = \prod_{i=1}^{n} F_{X_i}(x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.$$
It can be shown that n discrete random variables X_1, \ldots, X_n with joint mass function $p(\cdot, \ldots, \cdot)$ are independent if and only if

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_{X_i}(x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.$$

It can be shown that n jointly abs cont. random variables X_1, \ldots, X_n with joint density $f(\cdot, \ldots, \cdot)$ are independent if and only if

$$f(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_{X_i}(x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.$$
It can be shown that n discrete random variables X_1, \ldots, X_n with joint mass function $p(\cdot, \ldots, \cdot)$ are independent if and only if

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_{X_i}(x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.$$

It can be shown that n jointly abs cont. random variables X_1, \ldots, X_n with joint density $f(\cdot, \ldots, \cdot)$ are independent if and only if

$$f(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_{X_i}(x_i), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.$$
Example 6

Suppose that X_1, \ldots, X_n are independent absolutely continuous random random variables with a common density f. Define

$$U = \min\{X_1, \ldots, X_n\}, \quad V = \max\{X_1, \ldots, X_n\}.$$

Find the densities of U and V respectively.

Let’s deal with V first. Let F be the common distribution. For any $v \in \mathbb{R}$,

$$P(V \leq v) = P(X_1 \leq v, \ldots, X_n \leq v) = (F(v))^n.$$

Thus the density of V is $f_V(v) = n(F(v))^{n-1}f(v)$.
Example 6

Suppose that X_1, \ldots, X_n are independent absolutely continuous random random variables with a common density f. Define

$$
U = \min\{X_1, \ldots, X_n\}, \quad V = \max\{X_1, \ldots, X_n\}.
$$

Find the densities of U and V respectively.

Let's deal with V first. Let F be the common distribution. For any $v \in \mathbb{R}$,

$$
P(V \leq v) = P(X_1 \leq v, \ldots, X_n \leq v) = (F(v))^n.
$$

Thus the density of V is $f_V(v) = n(F(v))^{n-1}f(v)$.
Now let’s deal with U. For any $u \in \mathbb{R}$,

\[
P(U \leq u) = 1 - P(U > u) = 1 - P(X_1 > u, \ldots, X_n > u) = 1 - (1 - F(u))^n.
\]

Thus the density of U is

\[
f_U(u) = n(1 - F(u))^{n-1}f(u).
\]

We can also find the joint density of U and V. I will come back to this later in this chapter.
Now let's deal with U. For any $u \in \mathbb{R}$,

\[
P(U \leq u) = 1 - P(U > u) = 1 - P(X_1 > u, \ldots, X_n > u)
= 1 - (1 - F(u))^n.
\]

Thus the density of U is

\[
f_U(u) = n(1 - F(u))^{n-1}f(u).
\]

We can also find the joint density of U and V. I will come back to this later in this chapter.
Outline

1. General Info
2. 6.2 Independent random variable
3. 6.3 Sums of independent random variables.
Suppose X and Y are independent abs. cont. random variables with density f_X and f_Y respectively. Find the density of $Z = X + Y$.
Suppose X and Y are independent abs. cont. random variables with density f_X and f_Y respectively. Find the density of $Z = X + Y$.
For any $z \in \mathbb{R}$,

$$F_z(z) = P(X + Y \leq z)$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} f_X(x) f_Y(y) dy \right) dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z} f_X(x) f_Y(v - x) dv \right) dx, \quad (y = v - x)$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} f_X(x) f_Y(v - x) dx dv$$

Thus the density of Z is

$$f_z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx.$$

Similarly, we also have

$$f_z(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy.$$
For any $z \in \mathbb{R}$,

$$F_Z(z) = P(X + Y \leq z)$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} f_X(x)f_Y(y)dy \right) dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z} f_X(x)f_Y(v-x)dv \right) dx, \quad (y = v - x)$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} f_X(x)f_Y(v-x)dxdv$$

Thus the density of Z is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx.$$

Similarly, we also have

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y)f_Y(y)dy.$$