Second Homework Set — Solutions
Chapter 2

Problem 17 There are \(64 \cdot 63 \cdot 62 \cdot 61 \cdot 60 \cdot 59 \cdot 58 \cdot 57\) ways of arranging 8 castles on a chess board. Of these, there are \(64 \cdot 49 \cdot 36 \cdot 25 \cdot 16 \cdot 9 \cdot 4 \cdot 1 = \prod_{i=1}^{8} i^2\) in which none of the rooks can capture any of the others. So the answer is

\[
\prod_{i=1}^{8} i^2 = 64 \cdot 63 \cdot 62 \cdot 61 \cdot 60 \cdot 59 \cdot 58 \cdot 57.
\]

Problem 18 \(2 \cdot 4 \cdot 16 \over 52 \cdot 51\).

Problem 20 Let \(A\) be the event that you are dealt a blackjack, and let \(B\) be the event that the dealer is dealt a blackjack.

Then

\[
P(A) = P(B) = \frac{2 \cdot 4 \cdot 16}{52 \cdot 51},
\]

\[
P(AB) = \frac{4 \cdot 4 \cdot 16 \cdot 3 \cdot 15}{52 \cdot 51 \cdot 50 \cdot 49},
\]

\[
P(A \cup B) = P(A) + P(B) - P(AB) = 0.0948.
\]

Hence, then probability that neither you nor the dealer is dealt a blackjack is \(1 - P(A \cup B) = 0.9052\).

Problem 21 (a) \(P(1) = \frac{4}{20} = \frac{1}{5}, \ P(2) = \frac{8}{20} = \frac{2}{5}, \ P(3) = \frac{5}{20} = \frac{1}{4}, \ P(4) = \frac{2}{20} = \frac{1}{10},\) and \(P(5) = \frac{1}{20}\).

(b) There are 48 children altogether, so that \(P(1) = \frac{4}{48} = \frac{1}{12}, \ P(2) = \frac{28}{48} = \frac{7}{12}, \ P(3) = \frac{35}{48} = \frac{5}{6}, \ P(4) = \frac{42}{48} = \frac{7}{8},\) and \(P(5) = \frac{3}{48}\).

Problem 25 Let \(E_n\) be the event that a sum of 5 occurs on the \(n\)th roll, and no sum of 5 or 7 occurs on the first \(n-1\) rolls. There are 36 outcomes of a single roll, and four of them give a sum of 5, while 6 of them give a sum of 7. Hence,

\[
P(E_n) = \left(\frac{26}{36}\right)^{n-1} \cdot \frac{4}{36} = \left(\frac{13}{18}\right)^{n-1} \cdot \frac{1}{9}.
\]
A sum of 5 occurs before a sum of 7 precisely if the events E_n occurs for some n. Since E_n and E_m are disjoint if $n \neq m$, the desired probability is

$$
\sum_{n=1}^{\infty} P(E_n) = \sum_{n=1}^{\infty} \left(\frac{13}{18} \right)^{n-1} \cdot \frac{1}{9} \cdot \frac{1}{1 - \frac{13}{18}} = \frac{118}{9} \cdot \frac{5}{9} = \frac{2}{5}.
$$

Problem 27

$$
P(A \text{ wins in one move}) = \frac{3}{10}
$$

$$
P(A \text{ wins in three moves}) = \frac{7}{10} \cdot \frac{6}{9} \cdot \frac{3}{8} = \frac{7}{40}
$$

$$
P(A \text{ wins in five moves}) = \frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} = \frac{1}{12}
$$

$$
P(A \text{ wins in seven moves}) = \frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{40}
$$

$$
P(A \text{ wins}) = \frac{3}{10} + \frac{7}{40} + \frac{1}{12} + \frac{1}{40} = \frac{7}{12}
$$

Problem 28 (a) Without replacement:

$$
P(\text{all three balls are the same color}) = \frac{\binom{5}{3} + \binom{6}{3} + \binom{8}{3}}{\binom{19}{3}}
$$

With replacement:

$$
P(\text{all three balls are the same color}) = \left(\frac{5}{19} \right)^3 + \left(\frac{6}{19} \right)^3 + \left(\frac{8}{19} \right)^3
$$

(b) Without replacement:

$$
P(\text{all three balls are of different colors}) = \frac{\binom{5}{1} \cdot \binom{6}{1} \cdot \binom{8}{1}}{\binom{19}{3}}
$$

With replacement:

$$
P(\text{all three balls are of different colors}) = 3! \cdot \frac{5}{19} \cdot \frac{6}{19} \cdot \frac{8}{19}
$$

Problem 32 There are $(b+g)!$ ways to line up the children. There are $g \cdot (b+g-1)!$ arrangements with a girl in the ith position. The desired probability is

$$
\frac{g(b+g-1)!}{(b+g)!} = \frac{g}{b+g}.
$$
Problem 37 (a) There are \(\binom{10}{5} \) selections for the final exam. The number of selections that allow the student to solve all problems is \(\binom{7}{5} \), so that the desired probability is \(\frac{\binom{7}{5}}{\binom{10}{5}} = 0.08333 \).

(b) There are \(\binom{7}{4} \cdot \binom{3}{1} \) selections that’ll let the student solve exactly four problems, so that the probability of solving at least four problems is \(\frac{\binom{7}{4} \cdot \binom{3}{1}}{\binom{10}{5}} = \frac{1}{2} \).

Problem 43 (a) There are \(n! \) ways to arrange \(n \) people in a line. There are \(2(n-1)! \) ways to arrange them such that \(A \) and \(B \) are next to each other. Hence, the probability of \(A \) and \(B \) being next to each other is \(\frac{2(n-1)!}{n!} = \frac{2}{n} \).

(b) If \(n = 2 \), then \(A \) and \(B \) will always be next to each other. Now, assume that \(n > 3 \). After \(A \) picks a seat, there are \(n-1 \) seats left, two of which are next to \(A \), so that the desired probability is \(\frac{2(n-1)!}{n!} \).

Problem 50 The probability that you have five spades and your partner has the remaining eight spades is

\[
\frac{\binom{13}{5} \cdot \binom{39}{8} \cdot \binom{8}{8} \cdot \binom{31}{5}}{\binom{52}{13} \cdot \binom{13}{2} \cdot \binom{26}{8}} = 2.6084 \cdot 10^{-6}.
\]

Problem 53 Let \(E_i \) be the event that the \(i \)-th couple sit together, for \(j = 1, \ldots, 4 \). Then \(P(E_i) = \frac{2}{8} = \frac{1}{4} \) (Problem 43(a)). Moreover, if \(i < j \), then \(P(E_i E_j) = \frac{2^4 \cdot 6!}{8!} \). Similarly, if \(i < j < k \), then \(P(E_i E_j E_k) = \frac{2^3 \cdot 5!}{8!} \).

Finally, we have \(P(E_1 E_2 E_3 E_4) = \frac{2^4 \cdot 4!}{8!} \). Using inclusion-exclusion, we obtain

\[
P(E_1 \cup E_2 \cup E_3 \cup E_4) = \sum_{i=1}^{4} P(E_i) - \sum_{i<j} P(E_iE_j) + \sum_{i<j<k} P(E_iE_jE_k) - P(E_1E_2E_3E_4)
\]

\[
= 4 \cdot \frac{1}{4} - \binom{4}{2} \frac{2^2 \cdot 6!}{8!} + \binom{4}{3} \frac{2^3 \cdot 5!}{8!} - \frac{2^4 \cdot 4!}{8!}
\]

\[
= 1 - \frac{3}{7} + \frac{2}{21} - \frac{1}{105} = \frac{23}{35}.
\]

Hence, the probability that no husband sits next to his wife is \(1 - \frac{23}{35} = \frac{12}{35} \).
Problem 54 Let \(S, H, C, \) and \(D \) be the event that spades are missing, hearts are missing, etc. Then
\[
P(S \cup H \cup C \cup D) = P(S) + P(H) + P(C) + P(D)
\]
\[
- P(SH) - P(SC) - P(SD) - P(HC) - P(HD) - P(CD)
\]
\[
+ P(SHC) + P(SHD) + P(SCD) + P(HCD)
\]
\[
- P(SHCD)
\]
\[
= 4 \cdot \frac{39}{52} - 6 \cdot \frac{26}{52} + 4 \cdot \frac{1}{52} - 0
\]
\[
= 0.0511.
\]

Chapter 3

Problem 1 Let \(E \) be the event that at least one die lands on six, and let \(F \) be the event that the dice land of different numbers. Then
\[
P(EF) = 2 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{5}{18}
\]
and
\[
P(F) = \frac{30}{36} = \frac{5}{6}.
\]
Hence,
\[
P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{5}{18}}{\frac{5}{6}} = \frac{1}{3}.
\]

Problem 5
\[
\frac{6 \cdot 5 \cdot 9 \cdot 8}{15 \cdot 14 \cdot 13 \cdot 12} = \frac{6}{91}
\]

Problem 6 Let \(A \) be the event that the sample drawn contains exactly three white balls. Let \(B \) be the event that the first and third ball drawn are white.

Without replacement
\[
P(A) = 4 \cdot \frac{\frac{8}{12} \cdot \frac{7}{11} \cdot \frac{6}{10} \cdot \frac{4}{9}}{\frac{15}{12} \cdot \frac{14}{11} \cdot \frac{13}{10} \cdot \frac{12}{9}} \quad \text{and} \quad P(AB) = 2 \cdot \frac{\frac{8}{12} \cdot \frac{7}{11} \cdot \frac{6}{10} \cdot \frac{4}{9}}{\frac{15}{12} \cdot \frac{14}{11} \cdot \frac{13}{10} \cdot \frac{12}{9}},
\]
hence \(P(B|A) = \frac{P(AB)}{P(A)} = \frac{1}{2} \).

With replacement
\[
P(A) = \left(\frac{4}{3}\right) \left(\frac{2}{3}\right)^2 \frac{1}{3} \quad \text{and} \quad P(AB) = 2 \left(\frac{2}{3}\right)^2 \frac{1}{3},
\]
hence \(P(B|A) = \frac{P(AB)}{P(A)} = \frac{1}{2} \).

Problem 9 Let \(E_i \) be the event that the ball drawn from the \(i \)-th urn is white, for \(i = 1, 2, 3 \). Let \(F \) be the event that exactly two white balls were drawn.
Then
\[
P(E_1|F) = \frac{E_1F}{P(F)}
\]
\[
= \frac{P(E_1E_2E_3^c) + P(E_1E_3^cE_3)}{P(E_1E_2E_3^c) + P(E_1E_3^cE_3) + P(E_1^cE_2E_3)}
\]
\[
= \frac{\frac{2}{6}\cdot\frac{8}{12}\cdot\frac{3}{4} + \frac{2}{6}\cdot\frac{4}{12}\cdot\frac{1}{4}}{\frac{2}{6}\cdot\frac{8}{12}\cdot\frac{3}{4} + \frac{2}{6}\cdot\frac{4}{12}\cdot\frac{1}{4} + \frac{4}{6}\cdot\frac{8}{12}\cdot\frac{1}{4}}
\]
\[
= \frac{7}{11}.
\]

Problem 10 For \(i = 1, 2, 3\), let \(E_i\) be the event that the \(i\)-th card is a spade. Then

\[
P(E_1E_2E_3) = \frac{13}{52}\cdot\frac{12}{51}\cdot\frac{11}{50}
\]

and

\[
P(E_2E_3) = P(E_1E_2E_3) + P(E_1^cE_2E_3) = \frac{13}{52}\cdot\frac{12}{51}\cdot\frac{11}{50} + \frac{39}{52}\cdot\frac{13}{51}\cdot\frac{12}{50}.
\]

Thus

\[
P(E_1|E_2E_3) = \frac{P(E_1E_2E_3)}{P(E_2E_3)} = \frac{11}{50}.
\]