Math 461 Fall 2020

Renming Song

University of Illinois at Urbana-Champaign

November 16, 2020
General Info

8.2 Chebyshev’s inequality and the weak law of large numbers

8.3 Central Limit Theorem
Solution to Test 2 is on my homepage now. The median for Test 2 was 58.

HW10 is due Friday, 11/20, at noon. Please turn in your HW10 via the Moodle page. Make sure that your HW10 is uploaded successfully.
Solution to Test 2 is on my homepage now. The median for Test 2 was 58.

HW10 is due Friday, 11/20, at noon. Please turn in your HW10 via the Moodle page. Make sure that your HW10 is uploaded successfully.
Outline

1. General Info

2. 8.2 Chebyshev’s inequality and the weak law of large numbers

3. 8.3 Central Limit Theorem
When we are given the distribution of a random variable X, we can find the probability of any event defined in terms of X. Suppose that we are only given the expectation and variance of X, then, in general, we can not find the probability of events defined in terms of X exactly.

But for some events, we can still get some meaningful estimates on their probabilities. Let's first look at the case of a non-negative random variable X. Suppose that we only know $E[X]$.
When we are given the distribution of a random variable X, we can find the probability of any event defined in terms of X. Suppose that we are only given the expectation and variance of X, then, in general, we can not find the probability of events defined in terms of X exactly.

But for some events, we can still get some meaningful estimates on their probabilities. Let’s first look at the case of a non-negative random variable X. Suppose that we only know $E[X]$.
Markov inequality

Suppose that X is a non-negative random variable, then for any $a > 0$,

$$P(X \geq a) \leq \frac{E[X]}{a}.$$

Proof

Define a random variable

$$I = \begin{cases}
1, & \text{if } X \geq a, \\
0, & \text{otherwise}.
\end{cases}$$

Then $I \leq X/a$. Thus

$$P(X \geq a) = E[I] \leq E[X/a] = \frac{E[X]}{a}.$$
Markov inequality

Suppose that X is a non-negative random variable, then for any $a > 0$,

$$P(X \geq a) \leq \frac{E[X]}{a}.$$

Proof

Define a random variable

$$I = \begin{cases} 1, & \text{if } X \geq a, \\ 0, & \text{otherwise}. \end{cases}$$

Then $I \leq X/a$. Thus

$$P(X \geq a) = E[I] \leq E[X/a] = \frac{E[X]}{a}.$$
Note that the Markov inequality gives a trivial bound when $a \leq E[X]$. It only gives a non-trivial bound for $a > E[X]$.

As a consequence of the Markov inequality, we have the following

Chebyshev inequality

If X is a random variable with finite mean μ and finite variance σ^2, then for any $\epsilon > 0$,

$$P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}.$$
Note that the Markov inequality gives a trivial bound when \(a \leq E[X] \). It only gives a non-trivial bound for \(a > E[X] \).

As a consequence of the Markov inequality, we have the following

Chebyshev inequality

If \(X \) is a random variable with finite mean \(\mu \) and finite variance \(\sigma^2 \), then for any \(\epsilon > 0 \),

\[
P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}.
\]
Note that the Markov inequality gives a trivial bound when $a \leq E[X]$. It only gives a non-trivial bound for $a > E[X]$.

As a consequence of the Markov inequality, we have the following

Chebyshev inequality

If X is a random variable with finite mean μ and finite variance σ^2, then for any $\epsilon > 0$,

$$P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}.$$
Proof

Since \((X - \mu)^2\) is a non-negative random variable with mean \(\sigma^2\), we can apply the Markov inequality with \(a = \epsilon^2\) to get

\[
P(|X - \mu| \geq \epsilon) = P((X - \mu)^2 \geq \epsilon^2) \leq \frac{\sigma^2}{\epsilon^2}.
\]

Note that the Chebyshev inequality gives a trivial bound when \(\epsilon^2 \leq \sigma^2\). It only gives a non-trivial bound for \(\epsilon^2 > \sigma^2\).
Proof

Since

\[(X - \mu)^2 \]

is a non-negative random variable with mean \(\sigma^2\), we can apply the Markov inequality with \(a = \epsilon^2\) to get

\[P(|X - \mu| \geq \epsilon) = P((X - \mu)^2 \geq \epsilon^2) \leq \frac{\sigma^2}{\epsilon^2}.\]

Note that the Chebyshev inequality gives a trivial bound when \(\epsilon^2 \leq \sigma^2\). It only gives a non-trivial bound for \(\epsilon^2 > \sigma^2\).
Example 1

Suppose that it is known that the number of items produced in a certain factory during a week is a random variable X with mean 50.

(i) What can be said about the probability that this week’s production will be at least 75?

(ii) If the variance of a week’s production is known to be 25, then what can be said about the probability that this week’s production will be between 40 and 60?

$$P(X \geq 75) \leq \frac{50}{75} = \frac{2}{3}.$$
Example 1

Suppose that it is known that the number of items produced in a certain factory during a week is a random variable X with mean 50.

(i) What can be said about the probability that this week’s production will be at least 75?

(ii) If the variance of a week’s production is known to be 25, then what can be said about the probability that this week’s production will be between 40 and 60?

$$P(X \geq 75) \leq \frac{50}{75} = \frac{2}{3}.$$
Chebyshev's inequality, although very simple, is very useful. For example, it can be used to prove the following very important result, the weak law of large numbers.

$$P(40 \leq X \leq 60) = P(|x - 50| \leq 10) = 1 - P(|X - 50| \geq 11) \geq 1 - \frac{25}{11^2} = \frac{96}{121}.$$
Chebyshev’s inequality, although very simple, is very useful. For example, it can be used to prove the following very important result, the weak law of large numbers.

\[
P(40 \leq X \leq 60) = P(|x - 50| \leq 10) = 1 - P(|X - 50| \geq 11) \geq 1 - \frac{25}{11^2} = \frac{96}{121}.
\]
Theorem (the weak law of large numbers)

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables with common (finite) mean $E[X_1] = \mu$. Then, for any $\epsilon > 0$,

$$P \left(\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \epsilon \right) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

I will give a proof under the additional assumption that the random variables X_1, X_2, \ldots have a finite variance σ^2. The proof in the general case is more difficult.
Theorem (the weak law of large numbers)

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables with common (finite) mean $E[X_1] = \mu$. Then, for any $\epsilon > 0$,

$$P \left(\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \epsilon \right) \to 0 \quad \text{as} \quad n \to \infty.$$

I will give a proof under the additional assumption that the random variables X_1, X_2, \ldots have a finite variance σ^2. The proof in the general case is more difficult.
Proof of the weak law of large numbers

Note that

\[E \left(\frac{X_1 + \cdots + X_n}{n} \right) = \mu \]

and

\[\text{Var} \left(\frac{X_1 + \cdots + X_n}{n} \right) = \frac{\sigma^2}{n}. \]

It follows from Chebyshev’s inequality that for any \(\epsilon > 0 \),

\[P \left(\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \epsilon \right) \leq \frac{\sigma^2}{n\epsilon^2} \to 0, \quad \text{as } n \to \infty. \]
Outline

1. General Info

2. 8.2 Chebyshev’s inequality and the weak law of large numbers

3. 8.3 Central Limit Theorem
The central limit theorem is one the most important results in probability theory. In Chapter 5, we have already seen a special case of this result. Here is the general result

Central limit theorem
Suppose that X_1, X_2, \ldots are independent and identically distributed random variables with common mean μ and common variance σ^2. Then the distribution of

$$\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}$$

tends to the standard normal distribution as $n \to \infty$. That is, for any $a \in \mathbb{R}$,

$$P\left(\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \leq a \right) \to \Phi(a), \quad \text{as } n \to \infty.$$
The central limit theorem is one the most important results in probability theory. In Chapter 5, we have already seen a special case of this result. Here is the general result

Central limit theorem

Suppose that \(X_1, X_2, \ldots \) are independent and identically distributed random variables with common mean \(\mu \) and common variance \(\sigma^2 \). Then the distribution of

\[
\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}
\]

tends to the standard normal distribution as \(n \to \infty \). That is, for any \(a \in \mathbb{R} \),

\[
P \left(\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \leq a \right) \to \Phi(a), \quad \text{as } n \to \infty.
\]
Note that the generality of the theorem above. The common distributions of X_1, X_2, \ldots can be discrete, can be continuous, and can be neither discrete nor continuous. It can be regarded as universality law. I will try to give a proof this result next time and give some applications.