Math 461 Fall 2020

Renming Song

University of Illinois at Urbana-Champaign

October 23, 2020
HW7 is due today, at noon. Please submit your HW via the course Moodle page. Make sure that your HW is uploaded successfully.

Solution to HW7 will be on my homepage later this afternoon.
HW7 is due today, at noon. Please submit your HW via the course Moodle page. Make make that your HW is uploaded successfully

Solution to HW7 will be on my homepage later this afternoon.
Outline

1. General Info

2. 6.3 Sums of independent random variables
Last time, we have seen that, if X and Y are independent abs. cont. random variables with density f_X and f_Y respectively, then the density of $Z = X + Y$ is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z - x)dx$$

We also have

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y)f_Y(y)dy.$$

Now let’s suppose that X and Y are independent positive abs. cont. random variables with density f_X and f_Y respectively, then $Z = X + Y$ is a also a positive random variable and its density is
Last time, we have seen that, if X and Y are independent abs. cont. random variables with density f_X and f_Y respectively, then the density of $Z = X + Y$ is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z - x) \, dx$$

We also have

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y)f_Y(y) \, dy.$$

Now let's suppose that X and Y are independent positive abs. cont. random variables with density f_X and f_Y respectively, then $Z = X + Y$ is a also a positive random variable and its density is
\[f_Z(z) = \begin{cases} \int_0^z f_X(x)f_Y(z-x)\,dx, & z > 0, \\ 0, & \text{otherwise.} \end{cases} \]

We also have
\[f_Z(z) = \begin{cases} \int_0^z f_X(z-y)f_Y(y)\,dy, & z > 0, \\ 0, & \text{otherwise.} \end{cases} \]

Proposition

Suppose \(X \) and \(Y \) are independent random variables.

(i) If \(X \) and \(Y \) are Gamma random variables with parameters \((\alpha, \lambda)\) and \((\beta, \lambda)\) respectively, then \(X + Y \) is a Gamma random variable with parameters \((\alpha + \beta, \lambda)\).

(ii) If \(X \) and \(Y \) are normal random variables with parameters \((\mu_1, \sigma_1^2)\) and \((\mu_2, \sigma_2^2)\) respectively, then \(X + Y \) is a normal random variable \((\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)\).
\[f_Z(z) = \begin{cases} \int_0^z f_X(x)f_Y(z-x)dx, & z > 0, \\ 0, & \text{otherwise}. \end{cases} \]

We also have

\[f_Z(z) = \begin{cases} \int_0^z f_X(z-y)f_Y(y)dy, & z > 0, \\ 0, & \text{otherwise}. \end{cases} \]

Proposition

Suppose \(X \) and \(Y \) are independent random variables.

(i) If \(X \) and \(Y \) are Gamma random variables with parameters \((\alpha, \lambda)\) and \((\beta, \lambda)\) respectively, then \(X + Y \) is a Gamma random variable with parameters \((\alpha + \beta, \lambda)\).

(ii) If \(X \) and \(Y \) are normal random variables with parameters \((\mu_1, \sigma_1^2)\) and \((\mu_2, \sigma_2^2)\) respectively, then \(X + Y \) is a normal random variable \((\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)\).
Let’s prove (i). For any $z > 0$,

$$f_{X+Y}(z) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^z \lambda e^{-\lambda x} (\lambda x)^{\alpha-1} \lambda e^{-\lambda(z-x)} (\lambda(z-x))^{\beta-1} dx$$

$$= \frac{\lambda e^{-\lambda z}}{\Gamma(\alpha)\Gamma(\beta)} \lambda^{\alpha+\beta-1} \int_0^z x^{\alpha-1} (z-x)^{\beta-1} dx$$

$$= \frac{\lambda e^{-\lambda z}}{\Gamma(\alpha)\Gamma(\beta)} (\lambda z)^{\alpha+\beta-1} \int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du, \quad x = zu,$$

$$= \frac{\lambda e^{-\lambda z}}{\Gamma(\alpha)\Gamma(\beta)} (\lambda z)^{\alpha+\beta-1} B(\alpha, \beta)$$

$$= \frac{1}{\Gamma(\alpha + \beta)} \lambda e^{-\lambda z} (\lambda z)^{\alpha+\beta-1}.$$
Example 1

A basketball team will play a 44-game season. 26 of these games are against class A teams and 18 are against class B teams. Suppose that the team will win each game against a class A team with probability .4 and will win each game against a class B team with probability .7. Suppose also that the results of different games are independent. Approximate the probability that

(a) the team wins 25 or more games;
(b) the team will win more games against class A teams than it does against class B teams.

Let X_A and X_B denote respectively the number of games the team wins are against class A teams and are against class B teams. Then X_A and X_B are independent binomial random variables with parameters (26, .4) and (18, .7) respectively.
Example 1

A basketball team will play a 44-game season. 26 of these games are against class A teams and 18 are against class B teams. Suppose that the team will win each game against a class A team with probability .4 and will win each game against a class B team with probability .7. Suppose also that the results of different games are independent. Approximate the probability that

(a) the team wins 25 or more games;

(b) the team will win more games against class A teams than it does against class B teams.

Let X_A and X_B denote respectively the number of games the teams wins are against class A teams and are against class B teams. Then X_A and X_B are independent binomial random variables with parameters $(26, .4)$ and $(18, .7)$ respectively.
\begin{align*}
E[X_A] &= 26(.4) = 10.4, \quad \text{Var}(X_A) = 26(.4)(.6) = 6.24 \\
E[X_B] &= 18(.7) = 12.6, \quad \text{Var}(X_B) = 18(.7)(.3) = 3.78.
\end{align*}

By the central limit theorem, \(X_A \) is approximately normal with parameters \((10.4, 6.24)\) and \(X_B \) is approximately normal with parameters \((12.6, 3.78)\).

By the Proposition above, \(X_A + X_B \) is approximately normal with parameters \((23, 10.02)\) since \(X_A \) and \(X_B \) are independent. Thus

\begin{align*}
P(X_A + X_B \geq 25) &= P(X_A + X_B \geq 24.5) \\
&= P \left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \geq \frac{24.5 - 23}{\sqrt{10.02}} \right) \\
&= P \left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \geq .4739 \right) \approx 1 - \Phi(.4739) \approx .3178.
\end{align*}
\[E[X_A] = 26(.4) = 10.4, \quad \text{Var}(X_A) = 26(.4)(.6) = 6.24 \]
\[E[X_B] = 18(.7) = 12.6, \quad \text{Var}(X_B) = 18(.7)(.3) = 3.78. \]

By the central limit theorem, \(X_A \) is approximately normal with parameters \((10.4, 6.24)\) and \(X_B \) is approximately normal with parameters \((12.6, 3.78)\).

By the Proposition above, \(X_A + X_B \) is approximately normal with parameters \((23, 10.02)\) since \(X_A \) and \(X_B \) are independent. Thus

\[
P(X_A + X_B \geq 25) = P(X_A + X_B \geq 24.5)
\]
\[
= P \left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \geq \frac{24.5 - 23}{\sqrt{10.02}} \right)
\]
\[
= P \left(\frac{X_A + X_B - 23}{\sqrt{10.02}} \geq .4739 \right) \approx 1 - \Phi(.4739) \approx .3178.
\]
Since X_A and X_B are independent, by the Proposition above, $X_A - X_B$ is approximately normal with parameters $(-2.2, 10.02)$. Hence

$$P(X_A - X_B \geq 1) = P(X_A - X_B \geq .5)$$

$$= P \left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \geq \frac{.5 + 2.2}{\sqrt{10.02}} \right)$$

$$= P \left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \geq .8530 \right) \approx 1 - \Phi(.8530) \approx .1968.$$

Example 2

Suppose that X and Y are independent standard normal random variables. Find the density of $Z = X^2 + Y^2$.
Since X_A and X_B are independent, by the Proposition above, $X_A - X_B$ is approximately normal with parameters $(-2.2, 10.02)$. Hence

\[
P(X_A - X_B \geq 1) = P(X_A - X_B \geq 0.5)
= P \left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \geq \frac{0.5 + 2.2}{\sqrt{10.02}} \right)
= P \left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \geq 0.8530 \right) \approx 1 - \Phi(0.8530) \approx 0.1968.
\]

Example 2

Suppose that X and Y are independent standard normal random variables. Find the density of $Z = X^2 + Y^2$.
We know that X^2 and Y^2 are independent Gamma random variables with parameters $(\frac{1}{2}, \frac{1}{2})$. Thus $X^2 + Y^2$ is a Gamma random variables with parameters $(1, \frac{1}{2})$, that is, an exponential random variable with parameter $1/2$.

Example 3

Suppose that X and Y are independent random variables, both uniformly distributed on $(0, 1)$. Find the density of $Z = X + Y$.

Applying the formula directly is not easy. We look for the distribution of Z first.
We know that X^2 and Y^2 are independent Gamma random variables with parameters $(\frac{1}{2}, \frac{1}{2})$. Thus $X^2 + Y^2$ is a Gamma random variables with parameters $(1, \frac{1}{2})$, that is, an exponential random variable with parameter $1/2$.

Example 3

Suppose that X and Y are independent random variables, both uniformly distributed on $(0, 1)$. Find the density of $Z = X + Y$.

Applying the formula directly is not easy. We look for the distribution of Z first.
We know that X^2 and Y^2 are independent Gamma random variables with parameters $(\frac{1}{2}, \frac{1}{2})$. Thus $X^2 + Y^2$ is a Gamma random variables with parameters $(1, \frac{1}{2})$, that is, an exponential random variable with parameter $1/2$.

Example 3

Suppose that X and Y are independent random variables, both uniformly distributed on $(0, 1)$. Find the density of $Z = X + Y$.

Applying the formula directly is not easy. We look for the distribution of Z first.
$X + Y$ takes values in $(0, 2)$. For $z \in (0, 1)$,

$$P(Z \leq z) = P(X + Y \leq z) = \frac{z^2}{2}.$$

For $z \in (1, 2)$,

$$P(Z \leq z) = P(X + Y \leq z) = 1 - \frac{(2 - z)^2}{2}.$$
$X + Y$ takes values in $(0, 2)$. For $z \in (0, 1)$,

$$P(Z \leq z) = P(X + Y \leq z) = \frac{z^2}{2}.$$

For $z \in (1, 2)$,

$$P(Z \leq z) = P(X + Y \leq z) = 1 - \frac{(2 - z)^2}{2}.$$
Thus the density of Z is

$$f_Z(z) = \begin{cases}
 z, & 0 \leq z \leq 1, \\
 2 - z, & 1 < z < 2, \\
 0, & \text{otherwise.}
\end{cases}$$

Suppose that X and Y are independent discrete random variables with mass functions $p_X(\cdot)$ and $p_Y(\cdot)$ respectively. Find the mass function of $Z = X + Y$.
Thus the density of Z is

$$f_Z(z) = \begin{cases}
 z, & 0 \leq z \leq 1, \\
 2 - z, & 1 < z < 2, \\
 0, & \text{otherwise}.
\end{cases}$$

Suppose that X and Y are independent discrete random variables with mass functions $p_X(\cdot)$ and $p_Y(\cdot)$ respectively. Find the mass function of $Z = X + Y$.
For any z,

$$p_Z(z) = P(X + Y = z) = \sum_x P(X + Y = z, X = x)$$

$$= \sum_x P(X = x, Y = z - x) = \sum_x P(X = x)P(Y = z - x)$$

$$= \sum_x p_X(x)p_Y(z - x).$$

We also have

$$p_Z(z) = \sum_y p_X(z - y)p_Y(y).$$
For any z,

$$p_Z(z) = P(X + Y = z) = \sum_x P(X + Y = z, X = x)$$

$$= \sum_x P(X = x, Y = z - x) = \sum_x P(X = x)P(Y = z - x)$$

$$= \sum_x p_X(x)p_Y(z - x).$$

We also have

$$p_Z(z) = \sum_y p_X(z - y)p_Y(y).$$
If X and Y are integer-valued, then for any integer z,

$$p_{X+Y}(z) = \sum_{x=-\infty}^{\infty} p_X(x)p_Y(z-x).$$

If X and Y are non-negative integer-valued, then for any non-negative integer z,

$$p_{X+Y}(z) = \sum_{x=0}^{z} p_X(x)p_Y(z-x).$$

If X and Y are positive integer-valued, then $X + Y$ takes values $2, 3, \ldots$. For $z = 2, 3, \ldots$,

$$p_{X+Y}(z) = \sum_{x=1}^{z-1} p_X(x)p_Y(z-x).$$
If X and Y are integer-valued, then for any integer z,

$$p_{X+Y}(z) = \sum_{x=-\infty}^{\infty} p_X(x)p_Y(z-x).$$

If X and Y are non-negative integer-valued, then for any non-negative integer z,

$$p_{X+Y}(z) = \sum_{x=0}^{z} p_X(x)p_Y(z-x).$$

If X and Y are positive integer-valued, then $X+Y$ takes values $2, 3, \ldots$. For $z = 2, 3, \ldots$,

$$p_{X+Y}(z) = \sum_{x=1}^{z-1} p_X(x)p_Y(z-x).$$
Proposition

Suppose that X and Y are independent random variables.

(i) If X is a binomial random variable with parameters (m, p), and Y is a binomial random variable with parameters (n, p), then $X + Y$ is a binomial random variable with parameters $(m + n, p)$;

(ii) If X is a Poisson random variables with parameter λ_1, and Y is a Poisson random variables with parameter λ_2, then $X + Y$ is a Poisson random variables with parameter $\lambda_1 + \lambda_2$;

(iii) If X is a negative binomial random variable with parameters (r_1, p), and Y is a negative binomial random variable with parameters (r_2, p), then $X + Y$ is a negative binomial random variable with parameters $(r_1 + r_2, p)$.

I will only give the proof of (ii).
Proposition

Suppose that X and Y are independent random variables.

(i) If X is a binomial random variable with parameters (m, p), and Y is a binomial random variable with parameters (n, p), then $X + Y$ is a binomial random variable with parameters $(m + n, p)$;

(ii) If X is a Poisson random variables with parameter λ_1, and Y is a Poisson random variables with parameter λ_2, then $X + Y$ is a Poisson random variables with parameter $\lambda_1 + \lambda_2$;

(iii) If X is a negative binomial random variable with parameters (r_1, p), and Y is a negative binomial random variable with parameters (r_2, p), then $X + Y$ is a negative binomial random variable with parameters $(r_1 + r_2, p)$.

I will only give the proof of (ii).
For any \(z = 0, 1, \ldots \),

\[
p_{X+Y}(z) = \sum_{x=0}^{z} e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{z-x}}{(z-x)!}
\]

\[
= e^{-(\lambda_1+\lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!} \sum_{x=0}^{z} \binom{z}{x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{z-x}
\]

\[
= e^{-(\lambda_1+\lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!}.
\]

Example 4

Suppose that \(X \) and \(Y \) are independent geometric random variables with a common parameter \(p \). Find (a) the mass function of \(\min(X, Y) \); (b) \(P(\min(X, Y) = X) = P(Y \geq X) \).
For any \(z = 0, 1, \ldots \),

\[
px+y(z) = \sum_{x=0}^{z} e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{z-x}}{(z-x)!} \\
= e^{-(\lambda_1+\lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!} \sum_{x=0}^{z} \binom{z}{x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{z-x} \\
= e^{-(\lambda_1+\lambda_2)} \frac{(\lambda_1 + \lambda_2)^z}{z!}.
\]

Example 4

Suppose that \(X \) and \(Y \) are independent geometric random variables with a common parameter \(p \). Find (a) the mass function of \(\min(X, Y) \); (b) \(P(\min(X, Y) = X) = P(Y \geq X) \).
min\((X, Y) \) takes only positive integer values. For \(z = 1, 2, \ldots \),

\[
P(\min(X, Y) > z) = P(X > z, Y > z) = P(X > z)P(Y > z)
= (1 - p)^{2z} = (1 - (2p - p^2))^z.
\]

Thus \(\min(X, Y) \) is a geometric random variable with parameter \(2p - p^2 \).

\[
P(Y \geq X) = \sum_{x=1}^{\infty} P(X = x, Y \geq x) = \sum_{x=1}^{\infty} P(X = x, Y \geq x)
= \sum_{x=1}^{\infty} P(X = x)P(Y \geq x) = \sum_{x=1}^{\infty} p(1 - p)^{x-1}(1 - p)^{x-1}
= p \sum_{x=1}^{\infty} (1 - (2p - p^2))^{x-1} = \frac{p}{2p - p^2} = \frac{1}{2 - p}.
\]
min(X, Y) takes only positive integer values. For \(z = 1, 2, \ldots \),

\[
P(\min(X, Y) > z) = P(X > z, Y > z) = P(X > z)P(Y > z) \\
= (1 - p)^{2z} = (1 - (2p - p^2))^z.
\]

Thus \(\min(X, Y) \) is a geometric random variable with parameter \(2p - p^2 \).

\[
P(Y \geq X) = \sum_{x=1}^{\infty} P(X = x, Y \geq X) = \sum_{x=1}^{\infty} P(X = x, Y \geq x) \\
= \sum_{x=1}^{\infty} P(X = x)P(Y \geq x) = \sum_{x=1}^{\infty} p(1 - p)^{x-1}(1 - p)^{x-1} \\
= p \sum_{x=1}^{\infty} (1 - (2p - p^2))^{x-1} = \frac{p}{2p - p^2} = \frac{1}{2 - p}.
\]
Suppose that X and Y are independent random variables such that

$$P(X = i) = P(Y = i) = \frac{1}{100}, \quad i = 1, \ldots, 100.$$

Find (a) $P(X \geq Y)$; (b) $P(X = Y)$.

\[P(X \geq Y) = \sum_{y=1}^{100} P(X \geq Y, Y = y) = \sum_{y=1}^{100} P(X \geq y) P(Y = y) \]

\[= \frac{1}{100^2} \sum_{y=1}^{100} (101 - y) = \frac{1}{100^2} \sum_{i=1}^{100} i = \frac{101}{200}. \]

\[P(X = Y) = \sum_{y=1}^{100} P(X = x, Y = x) = \sum_{y=1}^{100} P(X = x, Y = x) \]

\[= \sum_{y=1}^{100} P(X = x) P(Y = x) = \frac{1}{100}. \]
Suppose that X and Y are independent random variables such that

$$P(X = i) = P(Y = i) = \frac{1}{100}, \quad i = 1, \ldots, 100.$$

Find (a) $P(X \geq Y)$; (b) $P(X = Y)$.

\[
P(X \geq Y) = \sum_{y=1}^{100} P(X \geq Y, Y = y) = \sum_{y=1}^{100} P(X \geq y)P(Y = y)
\]

\[
= \frac{1}{100^2} \sum_{y=1}^{100} (101 - y) = \frac{1}{100^2} \sum_{i=1}^{100} i = \frac{101}{200}.
\]

\[
P(X = Y) = \sum_{y=1}^{100} P(X = x, Y = X) = \sum_{y=1}^{100} P(X = x, Y = x)
\]

\[
= \sum_{y=1}^{100} P(X = x)P(Y = x) = \frac{1}{100}.
\]