Math 461, Solution Written Homework 9

1. Suppose that \(n \) balls are distributed at random into \(r \) boxes so that all \(r^n \) possible arrangements are equally likely. Let \(X \) be the number of empty boxes. Find the expectation and variance of \(X \).

Solution For \(i = 1, \ldots, r \), let \(X_i = 1 \) if the \(i \)-th box is empty and \(X_i = 0 \) otherwise. Then for any \(i \),

\[
E[X_i] = \mathbb{P}(X_i = 1) = \left(\frac{r - 1}{r} \right)^n,
\]

and so

\[
E[X] = E\left[\sum_{i=1}^{r} X_i \right] = r \left(\frac{r - 1}{r} \right)^n.
\]

For \(i \neq j \), we have

\[
E[X_i X_j] = \mathbb{P}(X_i = 1, X_j = 1) = \left(\frac{r - 2}{r} \right)^n
\]

and so

\[
\text{Cov}(X_i, X_j) = \left(\frac{r - 2}{r} \right)^n - \left(\frac{r - 1}{r} \right)^{2n}.
\]

Therefore

\[
\text{Var}(X) = \text{Var}\left(\sum_{i=1}^{r} X_i \right) = \sum_{i=1}^{r} \text{Var}(X_i) + \sum_{i \neq j} \text{Cov}(X_i, X_j)
\]

\[
= r \left(\frac{r - 1}{r} \right)^n \left(1 - \left(\frac{r - 1}{r} \right)^n \right) + (r^2 - r) \left(\left(\frac{r - 2}{r} \right)^n - \left(\frac{r - 1}{r} \right)^{2n} \right).
\]

2. Consider \(n \) independent flips of a coin having probability \(p \) of coming up heads. We say that a changeover occurs whenever an outcome differs from the one preceding it. Find the expected number of changeovers.

Solution For \(i = 2, \ldots, n \), let \(X_i = 1 \) if a changeover occurs at \(i \) and \(X_i = 0 \) otherwise. Then \(E[X_i] = \mathbb{P}(X_i = 1) = 2p(1 - p) \). Thus

\[
E[X] = E\left[\sum_{i=2}^{n} X_i \right] = 2(n - 1)p(1 - p).
\]
3. A certain region is inhabited by \(r \) distinct types of insect species, and each insect caught will, independently of the types of the previous catches, be of type \(i \) with probability \(p_i, i = 1, 2, \ldots, r, \sum_{i=1}^{r} p_i = 1 \). (a) Find the expected number of insects that are caught before the first type 1 catch. (b) Find the expected number of types of insects that are caught before the first type 1 catch.

Solution (a) The number of insects that are caught before the first type 1 catch is \(X - 1 \), where \(X \) is a geometric random variable with parameter \(p_1 \). Thus the expected number of insects that are caught before the first type 1 catch is equal to

\[
\frac{1}{p_1} - 1.
\]

(b) For \(i = 2, \ldots, r \), let \(Y_i = 1 \) if a there is a type \(i \) catch before the first type 1 catch and \(Y_i = 0 \) otherwise. Then \(\sum_{i=2}^{r} Y_i \) is the total number of types of insects that are caught before the first type 1 catch. For any \(i = 2, \ldots, r \),

\[
E[Y_i] = P(Y_i = 1) = \frac{p_i}{p_1 + p_i}.
\]

Thus

\[
E[\sum_{i=2}^{r} Y_i] = \sum_{i=2}^{r} \frac{p_i}{p_1 + p_i}.
\]

4. The joint density function of \(X \) and \(Y \) is given by

\[
f(x, y) = \begin{cases}
 ye^{-y(x+1)} & x > 0, y > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

For any \(y > 0 \), find (a) the conditional density \(f_{X|Y}(x|y) \); (b) \(P(X > 2|Y = y) \); (c) \(E[X|Y = y] \).

Solution (a) For any \(y > 0 \),

\[
f_Y(y) = \int_0^\infty ye^{-y(x+1)} dx = e^{-y},
\]

thus

\[
f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)} = \begin{cases}
 ye^{-yx} & x > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

Therefore, \(f_{X|Y}(x|y) \) is an exponential density with parameter \(y \).

(b) It follows from (a) that \(P(X > 2|Y = y) = e^{-2y} \).

(c) It follows from (a) that \(E[X|Y = y] = \frac{1}{y} \).

5. Suppose that \(X \) and \(Y \) are independent Poisson random variables with parameters \(\lambda_1 \) and \(\lambda_2 \) respectively. For any \(n > 2 \). Find \(E[X|X + Y = n] \).
Solution Since X and Y are independent Poisson random variables with parameters λ_1 and λ_2 respectively, $X + Y$ is a Poisson random variable with parameter $\lambda_1 + \lambda_2$. Thus, for $x = 0, 1, \ldots, n$,

$$p_{X|X+Y}(x|n) = \frac{\mathbb{P}(X = x, X + Y = n)}{\mathbb{P}(X + Y = n)} = \frac{\mathbb{P}(X = x, x + Y = n)}{\mathbb{P}(X + Y = n)} = \frac{\mathbb{P}(X = x)\mathbb{P}(Y = n - x)}{\mathbb{P}(X + Y = n)}$$

$$= \frac{e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{n-x}}{(n-x)!}}{e^{-(\lambda_1 + \lambda_2)} \frac{\lambda_1^x \lambda_2^{n-x}}{(\lambda_1 + \lambda_2)^n}} = \binom{n}{x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-x}.$$

That is, $p_{X|X+Y}(x|n)$ is binomial mass function with parameters $(n, \frac{\lambda_1}{\lambda_1 + \lambda_2})$. Therefore

$$E[X|X + Y = n] = \frac{n\lambda_1}{\lambda_1 + \lambda_2}.$$