Page 43. 8(c). If \(A = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \), \(B = \begin{bmatrix} -2 & 1 \\ 0 & 4 \end{bmatrix} \), and \(C = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \end{bmatrix} \), verify that
\[
A(B + C) = AB + AC.
\]
We calculate. First, left hand side.
\[
A(B + C) = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \left(\begin{bmatrix} -2 & 1 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \end{bmatrix} \right) = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \end{bmatrix} = [10 \ 17]
\]
Now the right hand side.
\[
[10 \ 17] = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \end{bmatrix} = [10 \ 17].
\]

Page 44. 15. A matrix \(A \) is said to be skew symmetric if \(A^T = -A \). Show that if a matrix is skew symmetric, then its diagonal entries must all be 0.

If \(A = [a_{ij}] \), then \(A^T = [a_{ji}] \) for all \(i, j \). Hence, if \(A \) is skew symmetric, then \(a_{ji} = -a_{ij} \) for all \(i, j \). In particular, \(a_{ii} = -a_{ii} \) and \(a_{ii} = 0 \).

Page 56. 8. Let
\[
A = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ -1 & 1 & -1 & -1 \\ -1 & -1 & 1 & -1 \\ -1 & -1 & -1 & 1 \end{bmatrix}.
\]
Compute \(A^2 \) and \(A^3 \). Just using the definition of matrix multiplication, along with some patience, we obtain \(A^2 = I \) and \(A^3 = A \).

Here is a less computational way to do this. If \(J \) is the 4 \times 4 matrix all of whose entries are 1, then \(J^2 = 4J \) (why?); hence, \(\left(\frac{1}{2} J \right)^2 = \frac{1}{4} J^2 = \frac{1}{4} 4J = J \).

Now \(A = \frac{1}{2} (2I - J) \), where \(I \) is the 4 \times 4 identity matrix. But \(2I \) commutes with \(J \) (in fact, for any scalar \(t \), the matrix \(tI \) commutes with every matrix), and so we can use the Binomial Theorem:
\[
A^2 = \frac{1}{4} (4I - 4J + J^2) = \frac{1}{4} (4J - 4J + 4I) = I.
\]
And it is now easy to compute \(A^3 = AA^2 = AI = A \).

The last part of the problem can be done by induction. We prove that \(A^{2n+1} = A \) by induction on \(n \geq 0 \). The base step \(n = 0 \) says that \(A^1 = A \); sure it is. For the inductive step, the inductive hypothesis \(A^{2n+1} = A \) gives
\[
A^{2(n+1)+1} = A^{2(n+1)+2} = AA^2 = A^3 = A,
\]
for we have already verified that $A^3 = A$.

We prove that $A^{2n} = I$ by induction on $n \geq 0$. The base step $n = 0$ says that $A^0 = I$; this is the definition of exponent 0: $M^0 = I$ for every matrix M (if you don’t like this, start your induction at $n = 1$, so that the base step is $A^2 = I$, which we have already verified). For the inductive step, the inductive hypothesis $A^{2n} = I$ gives

$$A^{2(n+1)} = A^{2n+2} = A^{2n}A^2 = IA^2 = I,$$

for $A^2 = I$.

Here is a proof without induction. If the exponent is even, say $2n$, then $A^{2n} = (A^2)^n = I^n = I$, while if the exponent is odd, say $2n + 1$, then $A^{2n+1} = A^{2n}A = IA = A$ (for we just saw that $A^{2n} = I$).