1. Define each of the first five terms.

(i) (4 points) The list \(v_1, \ldots, v_n \) of vectors is linearly independent.

Whenever there are scalars \(c_1, \ldots, c_n \) with \(c_1 v_1 + \cdots + c_n v_n = 0 \), then all \(c_i = 0 \).

(ii) (4 points) Dimension of a finite-dimensional vector space \(V \).

The dimension of \(V \) is the number of elements in a basis of \(V \).

(iii) (4 points) Orthogonal complement \(S^\perp \) of a subspace \(S \) of a vector space \(V \).

\[S^\perp = \{ v \in V : (v, s) = 0 \text{ for all } s \in S \} \]

(iv) (4 points) A Hermitian matrix \(A = [a_{jk}] \). (You must explain your notation.)

\[A^H = A. \text{ Here, } A^H = [a_{kj}]^\top. \]

(v) (4 points) An eigenvalue of a linear operator \(L : V \to V \).

A number \(\lambda \) for which there exists a nonzero vector \(v \) with \(Av = \lambda v \).

(vi) (5 points) What are the columns of the transition matrix \(P \) from a basis \(X \) to a basis \(Y \)?

If \(X = x_1, \ldots, x_n \), then the \(j \)th column of \(P \) consists of the coordinates of \(x_j \) with respect to \(Y \).

2. Consider the homogeneous linear system

\[
\begin{align*}
x_1 + x_2 + x_3 - x_4 &= 0 \\
2x_1 + 2x_2 + 3x_3 + x_4 &= 0 \\
x_1 - x_2 + 2x_3 + 3x_4 + x_5 &= 0
\end{align*}
\]

i) (10 points) Find a basis of the row space of this system.

The row reduced echelon form for the coefficient matrix is

\[
E = \begin{bmatrix}
1 & 0 & 0 & -\frac{3}{4} & \frac{1}{2} \\
0 & 1 & 0 & -\frac{4}{7} & -\frac{1}{7} \\
0 & 0 & 1 & 3 & 0
\end{bmatrix}.
\]

A basis of the row space consists of the rows of \(E \).
ii) (15 points) Find a basis of the solution space of this system.

Using E, we see that the free variables are x_4 and x_5, and

\[
\begin{align*}
 x_1 &= \frac{3}{2}x_4 - \frac{1}{2}x_5 \\
 x_2 &= \frac{1}{2}x_4 + \frac{1}{2}x_5 \\
 x_3 &= -3x_4
\end{align*}
\]

Thus, a basis for the solution space is

\[
\left(\frac{2}{3}, \frac{1}{3}, -3\right)^T, \left(-\frac{1}{2}, \frac{1}{2}, 0\right)^T.
\]

3. Let A be an $n \times n$ matrix, where $n \geq 2$.

(i) (10 points) If A is singular, prove that $\text{adj}(A)$ is singular.

We know that $A \text{adj}(A) = \det(A)I$. Since A is singular, $\det(A) = 0$, and so $A \text{adj}(A) = 0$. If $A = 0$, then $\text{adj}(A) = 0$; if $A \neq 0$, then $\text{adj}(A)$ is singular: otherwise, multiply on the right by $\text{adj}(A)^{-1}$ and get $A = 0$.

(ii) (15 points) If A is nonsingular, find $\det(\text{adj}(A))$; justify your answer.

Since $A \text{adj}(A) = \det(A)I$, we have

\[
\det(\text{adj}(A)) = \det(A) \det(\text{adj}(A)) = \det(A)^n.
\]

Therefore, $\det(\text{adj}(A)) = \det(A)^{n-1}$.

4. Let V and W be vector spaces, let $U = u_1, \ldots, u_n$ be a basis of V, and let w_1, \ldots, w_n be a list of (not necessarily distinct) vectors in W. Prove that there is a unique linear transformation $L: V \rightarrow W$ with $L(u_i) = w_i$ for all i. You must show that the L you construct is single-valued.

Each $v \in V$ has coordinates wrt U: there are unique scalars c_1, \ldots, c_n with $v = c_1 u_1 + \cdots + c_n u_n$. Define L by

\[
L(v) = c_1 w_1 + \cdots + c_n w_n.
\]

Note that uniqueness of the coordinates shows that L is a single-valued function. Obviously, $L(u_i) = w_i$ for all i, and so it remains to prove that L is a linear transformation.

If $v' = c'_1 u_1 + \cdots + c'_n u_n$, then $v + v' = (c_1 + c'_1) u_1 + \cdots + (c_n + c'_n) u_n$, and so $L(v + v') = (c_1 + c'_1) w_1 + \cdots + (c_n + c'_n) w_n$. On the other hand, $L(v) + L(v') = [c_1 w_1 + \cdots + c_n w_n] + [c'_1 w_1 + \cdots + c'_n w_n] = (c_1 + c'_1) u_1 + \cdots + (c_n + c'_n) u_n$.

Finally, if α is a scalar, then

\[
L(\alpha v) = L(\alpha c_1 u_1 + \cdots + \alpha c_n u_n)
= \alpha c_1 w_1 + \cdots + \alpha c_n w_n
= \alpha(c_1 w_1 + \cdots + c_n w_n)
= \alpha L(v).
\]
To prove uniqueness, suppose that $T: V \rightarrow W$ is a linear transformation with $T(u_i) = w_i$ for all i. Since T preserves linear combinations, we have

$$T(v) = T(c_1u_1 + \cdots + c_nu_n)$$
$$= c_1T(u_1) + \cdots + c_nT(u_n)$$
$$= c_1w_1 + \cdots + c_nw_n$$
$$= L(v).$$

Therefore, $T = L$.

5. Let S be the set of all 4×4 skew-symmetric matrices.

(i) (10 points) Prove that S is a subspace of $\mathbb{R}^{4 \times 4}$.

Recall that A is skew-symmetric if $A^\top = -A$. Clearly, the zero matrix is skew-symmetric: $0 \in S$. If $A, B \in S$, then $A^\top = -A$ and $B^\top = -B$, so that $(A + B)^\top = A^\top + B^\top = -A - B = -(A + B)$; thus, $A + B \in S$. Finally, if α is a scalar and $A \in S$, then $(\alpha A)^\top = \alpha A^\top = \alpha(-A) = -(\alpha A)$, and so $\alpha A \in S$. Therefore, S is a subspace.

(ii) (15 points) Find dim(S); justify your answer.

Let E_{ij} be the 4×4 matrix having 1 in the ij spot and all other entries 0. Now skew-symmetric matrices $A = [a_{ij}]$ must have 0’s on the diagonal: since $a_{ji} = -a_{ij}$, we have $a_{ii} = -a_{ii}$. Therefore,

$$A = \begin{bmatrix}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{bmatrix},$$

and a basis for S consists of all $E_{ij} - E_{ji}$ for all $i < j$. Hence, dim(S) = 6.

6. (25 points) Let p be a solution of the system $Ax = b$, where $b \neq 0$. Prove that every solution has a unique expression of the form $u + p$, where u is a solution of the homogeneous system $Ax = 0$.

Let S be all the solutions of $Ax = b$, and let Z be the set of all $u + p$ where $Au = 0$.

We claim $S \subseteq Z$. If $s \in S$, then $As = b$. Hence, $A(s - p) = As - Ap = b - b = 0$; that is, $s - p$ is a solution of $Ax = 0$, and so $s = (s - p) + p \in Z$.

For the reverse inclusion $Z \subseteq S$, take $u + p \in Z$. Then $Au = 0$ and $Ap = b$, so that $A(u + p) = Au + Ap = 0 + b = b$; that is, $u + p \in S$.

For uniqueness, suppose that $u + p = u' + p$, where $Au = 0 = Au'$. Just cancel p to obtain $u = u'$.
7. Find the inverse of \(A = \begin{bmatrix} 2 & 3 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \).

You can either use \(\text{adj}(A) \) or Gaussian elimination. Either way,

\[A^{-1} = \frac{1}{4} \begin{bmatrix} 1 & -3 & -1 \\ 1 & 1 & -1 \\ -1 & 3 & 5 \end{bmatrix}. \]

8. Let \(A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \).

(i) (10 points) Prove that there is no matrix \(P \) with real entries such that \(P^{-1} A P \) is diagonal.

The characteristic polynomial of \(A \) is \(p(\lambda) = \lambda^2 - \sqrt{3}\lambda + 1 \), and the quadratic formula gives the eigenvalues to be \(\frac{1}{2}(\sqrt{3} \pm i) \). Now if \(PAP^{-1} = D \), where \(D \) is diagonal, then \(D \) has real entries and its diagonal entries would have to be the eigenvalues of \(A \), for similar matrices have the same eigenvalues. But the eigenvalues of \(A \) are not real.

(ii) (15 points) Find a matrix \(Q \) with complex entries such that \(Q^{-1} A Q \) is diagonal.

If \(Y = y_1, y_2 \) is a basis of eigenvalues of \(\mathbb{R}^2 \), then the matrix of \(A \) wrt to \(Y \) is a diagonal matrix with the eigenvalues of \(A \) on the diagonal. Thus, a matrix \(Q \) is a transition matrix from \(Y \) to the standard basis.

An eigenvector of \(A \) belonging to \(\sqrt{3} + i \) is \((i, 1)^\top \), and an eigenvector of \(A \) belonging to \(\sqrt{3} - i \) is \((-i, 1)^\top \). Thus,

\[Q = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix} \]

is such a matrix (since eigenvectors are determined up to nonzero scalar multiples, \(Q \) is not unique: we can multiply the first column by any nonzero complex number \(\alpha \) and the second column by any nonzero complex number \(\beta \)).