Math 318 Final Exam; Solutions May 12, 2004

1. If K is a finite field, prove that there is a prime p and an integer $n \geq 1$ with $|K| = p^n$.

If k is the prime field of K, then $k \cong \mathbb{F}_p$ for some prime p (the only other possibility is that $k \cong \mathbb{Q}$, which is impossible here because \mathbb{Q} is infinite). But K is a vector space over k (elements $\alpha \in K$ are the vectors and elements $a \in k$ are the scalars, with scalar multiplication $a\alpha$ being the given product of two elements in K). Since K is finite, a basis of K over k must be finite, so that $\dim_k (K) = n$ for some $n \geq 1$. Hence, $K \cong k^n$, and so $|K| = |k^n| = p^n$.

2. Let A be an $n \times n$ matrix over a field k. Recall that c is an eigenvalue of A if $h(c) = 0$, where $h(x) \in k[x]$ is the characteristic polynomial of A.

(i). (15 points) Prove that there is a field K containing k as subfield so that c is an eigenvalue of A if and only if there is a nonzero vector $v \in K^n$ with $Av = cv$.

By Kronecker’s theorem, there is a field K containing k as a subfield and which contains all the roots of $h(x)$, the characteristic polynomial of A.

If $Av = cv$, where $v \neq 0$, then the homogeneous system $(cI - A)x = 0$ has a nontrivial solution; hence, $\det(cI - A) = 0$. Therefore, c is a root of $\det(xI - A) = h(x)$; that is, c is an eigenvalue of A.

Conversely, consider the $n \times n$ system of linear equations $(cI - A)x = 0$. This is a system over the field K (for c may not lie in k). By hypothesis, $\det(cI - A) = 0$, and so there is a nontrivial solution $v \in K^n$; that is, $v \neq 0$, $(cI - A)v = 0$, and $Av = cv$.

(ii). (10 points) Prove that $A^m = 0$ for some $m \geq 1$ if and only if every eigenvalue of A is 0.

If c is an eigenvalue of A, then there is a nonzero vector $v \in K^n$ with $Av = cv$. We know (or can prove by induction on $m \geq 1$) that $A^m v = c^m v$. Hence, if $A^m = 0$, then $c^m v = 0$. Since $v \neq 0$, we have $c^m = 0$, and so $c = 0$.

Conversely, if every eigenvalue of A is 0, then the characteristic polynomial $h(x)$ of A is x^n (because $h(x) = \prod_{i=1}^n (x - c_i)$, where c_i are the eigenvalues of A). It now follows from the Cayley-Hamilton theorem (which says that $h(A) = 0$) that $A^n = 0$.

3. Let A and B be $n \times n$ matrices over a field k. If $AB = I$, prove that $BA = I$.

Let E be the standard basis of k^n, let $S: k^n \rightarrow k^n$ be the linear transformation defined by $S(v) = Av$, and let $T: k^n \rightarrow k^n$ be the linear transformation defined by $T(v) = Bv$. In the notation of the course,

$$A = E[S]_E \quad \text{and} \quad B = E[T]_E.$$
We know that
\[AB = (E[S]E)(E[T]E) = E[S \circ T]E, \]
so that \(E[S \circ T]E = I \). Therefore, \(S \circ T = 1_{k^n} \), so that it is a result of set theory that \(S \) is surjective and \(T \) is injective. It follows that \(\text{im} \, T \cong k^n \), so that \(\dim(T) = n \). But if \(W \subseteq V \) and both vector spaces have the same finite dimension \(n \), then \(W = V \). Therefore, \(T \) is surjective, and hence \(T \) is an isomorphism. Finally, \(S \circ T \circ T^{-1} = T^{-1} \), and so \(S \) and \(T \) commute. That is, \(T \circ S = 1 \).

4 (i). (15 points) To similarity, find all \(2 \times 2 \) real matrices \(A \) such that \(A^2 = I \).

Since \(A \) satisfies \(A^2 = I \), its eigenvalues are \(\pm 1 \). These eigenvalues are real, and so we may use the Jordan canonical form. The \(1 \times 1 \) Jordan blocks are \(\begin{bmatrix} 1 \end{bmatrix} \) and \(\begin{bmatrix} -1 \end{bmatrix} \), while the \(2 \times 2 \) Jordan blocks are \(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \) and \(\begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \).

There are 5 similarity classes. Besides the \(2 \times 2 \) Jordan blocks, there are \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), \(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \), and \(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \).

Note that \(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \) and \(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \) are similar, because permuting the Jordan blocks does not change the similarity class.

(ii). (10 points) Let \(G \) be the additive group of all \(2 \times 2 \) matrices over a field \(k \). Prove that trace is a linear transformation \(\text{tr} : G \to k \), and find a basis of \(\ker \text{tr} \).

Since \(\text{tr}(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = a + d \), it is easy to see that \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \) and \(\text{tr}(\alpha A) = \alpha \text{tr}(A) \). Now \(\text{tr} : G \to k \) is surjective: if \(\alpha \in k \), then \(\text{tr}(A) = \alpha \), where \(A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \). Therefore, \(\dim(\text{im} \, \text{tr}) = 1 \). Since \(\dim(G) = 4 \), we have \(\dim(\ker \text{tr}) = 3 \). In more detail, a matrix \(A \in \ker \text{tr} \) if and only if \(A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \), and a basis for \(\ker \text{tr} \) is \(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \).

5. If \(G \) is a group, then its \textit{commutator subgroup} \(G' \) is defined to be the subgroup of \(G \) generated by \(\{xyx^{-1}y^{-1} : x, y \in G\} \). In a previous exam, we proved that \(G' \triangleleft G \) and that \(G/G' \) is abelian.

5 (i). (10 points) If \(H \triangleleft G \) and \(G/H \) is abelian, prove that \(G' \triangleleft H \).

It suffices to show that every generator of \(G' \) lies in \(H \). If \(x, y \in G \), then \(xHyH = yHxH \) in \(G/H \). Therefore, \(xyH = yxH \), and so \(x^{-1}y^{-1}xy \in H \) for
all \(x, y \in G \). In we replace \(x \) by \(x^{-1} \) and \(y \) by \(y^{-1} \), then we have \(xyx^{-1}y^{-1} \in H \), as desired.

(ii). (15 points) If \(S \) is a subgroup of \(G \) and \(G' \leq S \), prove that \(S \triangleleft G \).

Since \(G' \leq S \), we have \(S/G' \leq G/G' \). But \(G/G' \) is abelian, so that every subgroup is normal. In particular, \(S/G' \triangleleft G/G' \), and the correspondence theorem gives \(S \triangleleft G \).

6 (i). (15 points) Find all those permutations in \(S_6 \) that commute with \(\alpha = (1 \ 2 \ 3)(4 \ 5 \ 6) \).

Hint. Consider \(\sigma = (1 \ 4 \ 2 \ 5 \ 3 \ 6) \).

We know that two permutations are conjugate in \(S_n \) if and only if they have the same cycle structure. The number of permutations in \(S_6 \) having the same cycle structure as \(\alpha \) is

\[
\frac{1}{2} \left(\frac{6 \cdot 5 \cdot 4}{3} \times \frac{3 \cdot 2 \cdot 1}{3} \right) = 40,
\]

the “extra” factor \(\frac{1}{2} \) occurring so that \((a \ b \ c)(d \ e \ f) = (d \ e \ f)(a \ b \ c)\) not be counted twice.

We use the orbit-stabilizer theorem: \(|\alpha^S_6| = |S_6 : C_{S_6}(\alpha)| \). We have

\[
40 = |\alpha^S_6| = |S_6 : C_{S_6}(\alpha)| = \frac{720}{|C_{S_6}(\alpha)|},
\]

so that

\[
|C_{S_6}(\alpha)| = \frac{720}{40} = 18.
\]

We can exhibit these elements: if \(\beta = (1 \ 2 \ 3) \) and \(\gamma = (4 \ 5 \ 6) \), then \(\beta^i \gamma^j \) commutes with \(\alpha \) for \(0 \leq i, j \leq 2 \). Thus, we have displayed 9 elements commuting with \(\alpha \). The hint suggests that you try \(\sigma = (1 \ 4 \ 2 \ 5 \ 3 \ 6) \). It turns out that \(\sigma \alpha = \alpha \sigma \), and so \(\sigma \beta^i \gamma^j \) also commutes with \(\alpha \). We have now displayed 18 such elements, and there can be no others. (You may wonder whether these 18 elements form a subgroup, as they must. They do, and the theological reason for this is that \(\sigma^2 = \alpha \).

(ii). (10 points) Find all those permutations in \(A_6 \) that commute with \(\alpha = (1 \ 2 \ 3)(4 \ 5 \ 6) \).

In part (i), we saw that there are 18 permutations in \(S_6 \) commuting with \(\alpha \). But \(\sigma \), being a 6-cycle, is an odd permutation, and so the only even permutations commuting with \(\alpha \) have the form \(\beta^i \gamma^j \).

7. Let \(p \) be an odd prime, and define \(G \) to be the set of all matrices of the form

\[
\begin{bmatrix}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{bmatrix},
\]

where \(a, b, c \in I_p \).
(i). (10 points) Prove that G is a group (under matrix multiplication) of order p^3.

It suffices to show that G is a subgroup of $\text{GL}(3, \mathbb{F}_p)$. Obviously, $I \in G$.

If \[
\begin{bmatrix}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{bmatrix}
\] \in G and \[
\begin{bmatrix}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{bmatrix}
\] \in G, then their product is \[
\begin{bmatrix}
1 & a+x & y+az+b \\
0 & 1 & c+z \\
0 & 0 & 1
\end{bmatrix}
\] \in G.

Finally, \[
\begin{bmatrix}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{bmatrix}
\] \begin{bmatrix}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{bmatrix}^{-1} = \begin{bmatrix}
1 & -a & ac-b \\
0 & 1 & -c \\
0 & 0 & 1
\end{bmatrix} \in G.

(ii). (15 points) Prove that $A^p = I$ for every $A \in G$.

We have $A = I + N$, where $N = \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$. Note that $N^3 = 0$. Since I and N commute, the binomial theorem gives

\[
A^p = (I + N)^p = I^p + N^p + \sum_{i=1}^{p-1} \binom{p}{i} N^i = I + N^p,
\]

because $\binom{p}{i} \equiv 0 \mod p$. Since $p \geq 3$ and $N^3 = 0$, we have $N^p = 0$, and so $A^p = I$.

8 (i). (5 points) Give an example of a finite group G whose center, $Z(G)$, is $\{1\}$.

Let $G = S_3$. We claim that $Z(S_3) = \{1\}$. The only nontrivial subgroups are S_3 itself, which is not the center because it is not abelian, or the cyclic subgroups, generated by a 2-cycle or a 3-cycle. But $(1 \ 2)(1 \ 2 \ 3) = (2 \ 3) \neq (1 \ 3) = (1 \ 2 \ 3)(1 \ 2)$. This can be generalized to show that no 2-cycle commutes with a 3-cycle.

8 (ii). (20 points) Prove that the center, $Z(G)$, of a finite p-group G has more than one element.

This follows from the class equation:

\[
|G| = |Z(G)| + \sum \left| \frac{G}{C_G(x_i)} \right|,
\]

where one x_i is chosen from each conjugacy class in G having more than one element. Since G is a p-group, we have $p \mid |G|$ and $p \mid \left| \frac{G}{C_G(x_i)} \right|$ for all i. Therefore, $p \mid |Z(G)|$ and $Z(G) \neq \{1\}$.