Math 124 Final Review Continued. Name: [Key]

(1) You must use the Cumulative Binomial Distribution Table for all parts to this question.

(a) Consider a Binomial process with \(n = 9 \) trials and probability of success \(p = 0.4 \), find the probability of getting at most 4 successes.

\[B(4; 9, 0.4) = 0.7334 \]

(b) Consider a Binomial process with \(n = 9 \) trials and probability of success \(p = 0.4 \), find the probability of getting exactly 4 successes.

\[b(4) = B(4) - B(3) = 0.7334 - 0.4826 \]

(c) Consider a Binomial process with \(n = 9 \) trials and probability of success \(p = 0.4 \), find the probability of getting 4, 5, 6, or 7 successes.

\[B(7) - B(3) = 0.9962 - 0.4826 \]

(d) Consider a Binomial process with \(n = 10 \) trials and probability of success \(p = 0.4 \), find the probability of getting at least 4 successes.

\[1 - B(3; 10, 0.4) = 1 - 0.3823 \]

(e) Now, consider a Binomial process with \(n = 10 \) trials and probability of success \(p = 0.65 \), find the probability of getting at least 6 successes.

\[B(4; 10, 0.35) = 0.7515 \]

You must use the Standard Normal Curve Table for questions (2) and (3).

(2) Find the indicated probability given that \(Z \) is a random variable with a standard normal distribution.

(a) \(P(Z \leq -0.31) \)

\[0.3783 \]

(b) \(P(0.04 \leq Z \leq 1.34) \)

\[0.9099 - 0.5160 \]

(c) \(P(Z \geq -1.1) \)

\[1 - 0.1357 \]
(3) Given that \(X \) is a normally distributed random variable with \(\mu = 1 \) and \(\sigma = 0.5 \), find the following probability.

\[
P_r(X \leq 1.24)
\]

\[
\Pr \left(z \leq \frac{1.24 - 1}{0.5} \right) = \Pr \left(z \leq \frac{0.24}{0.5} \right) = \Pr (z \leq 0.48) = 0.6841
\]

(4) An amount of \(P \) dollars is borrowed for the given length of time at an annual interest rate of \(r \). Determine the simple interest that is owed. (Set up with the appropriate formula, but do not evaluate.) \(P = \$1200, r = 3.0\%, 6 \) months.

\[
I = Prt = (1200)(0.03)(0.5)
\]

(5) Suppose that you open up a savings account with an initial balance \(P = \$1000 \) and an annual interest rate of \(r = 1.1\% \). Compute the amount in the account after 5 years when the interest is compounded (Set up with the appropriate formula, but do not evaluate.)

(a) quarterly.

\[
F = 1000 \left(1 + \frac{0.11}{4}\right)^{4 \cdot 5}
\]

(b) monthly.

\[
F = 1000 \left(1 + \frac{0.11}{12}\right)^{12 \cdot 5}
\]

(6) Suppose you knew of an investment that went from \$900 to \$7200 in 24 years. Using the table below, estimate what the approximate annual rate was.

<table>
<thead>
<tr>
<th>Interest Rate</th>
<th>Doubling Time (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>17.67</td>
</tr>
<tr>
<td>5</td>
<td>14.21</td>
</tr>
<tr>
<td>6</td>
<td>11.90</td>
</tr>
<tr>
<td>7</td>
<td>10.24</td>
</tr>
<tr>
<td>8</td>
<td>9.01</td>
</tr>
<tr>
<td>9 (circled)</td>
<td>8.04</td>
</tr>
<tr>
<td>10</td>
<td>7.27</td>
</tr>
<tr>
<td>15</td>
<td>4.96</td>
</tr>
<tr>
<td>20</td>
<td>3.80</td>
</tr>
</tbody>
</table>

\[900 \rightarrow 1800 \rightarrow 3600 \rightarrow 7200\] (doubles 3 times in 24 years, thus the doubling time is \(24/3 = 8 \) years.

9% interest