Math 124 Exam III

Exam Information

• This exam has 10 questions for a total of 100 points.
• Partial credit will be given for partially correct work.
• Circle your answers.
• Anyone caught cheating will receive an automatic zero for this exam, and there may be more severe consequences.
• No calculators, phones, or other electronic devices may be used during the exam.
• You have 60 minutes to complete the exam.

I certify that I have read, understand, and agree to abide by the above rules.

Signature: ____________________________

Circle your section number.

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Meeting Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Austin Rochford</td>
<td>Tuesdays 9:30–10:50 A.M.</td>
</tr>
<tr>
<td>M2</td>
<td>Katie Anders</td>
<td>Thursdays 9:30–10:50 A.M.</td>
</tr>
<tr>
<td>Q1</td>
<td>Austin Rochford</td>
<td>Tuesdays 12:30–1:50 P.M.</td>
</tr>
<tr>
<td>Q2</td>
<td>Alison Reddy</td>
<td>Thursdays 12:30–1:50 P.M.</td>
</tr>
<tr>
<td>S1</td>
<td>Panupong Vichitkunakorn</td>
<td>Tuesdays 2:00–3:20 P.M.</td>
</tr>
<tr>
<td>S2</td>
<td>Panupong Vichitkunakorn</td>
<td>Thursdays 2:00–3:20 P.M.</td>
</tr>
</tbody>
</table>

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO BY YOUR INSTRUCTOR.

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>18</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
</tr>
</tbody>
</table>
1. (3 points) Find the augmented matrix of the following system of equations \textbf{without actually solving the problem}.

\begin{align*}
5x + 6y + 7z &= 1 \\
4x - 3y &= -2 \\
7x - 2y + 50z &= 27
\end{align*}

2. (6 points) For each of the following matrices, determine whether the corresponding linear system is consistent or inconsistent. \textbf{Explain briefly without actually solving the problem}.

(a) \[
\begin{bmatrix}
1 & 0 & -3 & 2 \\
0 & 1 & 2 & 4 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(b) \[
\begin{bmatrix}
1 & 0 & -3 & 2 \\
0 & 1 & 2 & 4 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
3. (8 points) Give the solution to the system of equations that has the following augmented matrix. You may use any method you choose. Use variable names x_1, x_2, x_3.

$$
\begin{bmatrix}
1 & -3 & 5 & -5 \\
0 & 1 & 4 & -2 \\
0 & 0 & 1 & 2
\end{bmatrix}
$$
4. (8 points) For what value of k is the linear system corresponding to the following augmented matrix consistent?

\[
\begin{bmatrix}
1 & -6 & 2 & | & 8 \\
4 & -25 & 10 & | & 6 \\
2 & -13 & 6 & | & k
\end{bmatrix}
\]
5. (14 points) The system of equations

\[\begin{align*}
 x - 2y + 2z &= 3 \\
 -3x + 6y - 5z &= -4
\end{align*} \]

has the augmented matrix

\[
\begin{bmatrix}
 1 & -2 & 2 & | & 3 \\
 -3 & 6 & -5 & | & -4
\end{bmatrix}
\]

(a) Give the reduced row echelon form of the matrix. Clearly label what you are doing in each step.

(b) Give the parametric solution to the system of equations.

(c) Give a particular solution to the system of equations.
6. (14 points) Find

(a) \[
\begin{bmatrix}
2 & -1 \\
-2 & 5 \\
1 & 0
\end{bmatrix}
+ 2 \begin{bmatrix}
-1 & 1 \\
2 & -2 \\
0 & 3
\end{bmatrix}.
\]

(b) \[
\begin{bmatrix}
1 & -1 \\
-2 & 3 \\
5 & -3
\end{bmatrix}^\top
\]

(c) \[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\times \begin{bmatrix}
-1 \\
3 \\
-2
\end{bmatrix}
\]
7. (12 points) Consider the following matrices with their orders shown.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×2</td>
<td>2×2</td>
<td>2×4</td>
<td>4×3</td>
</tr>
</tbody>
</table>

Determine whether each of the following exists or not. For those that do, determine the order. For those that do not, state why not.

(a) AB

(b) AD

(c) ACD

(d) D^{-1}

8. (8 points) Let A and B be the coefficient matrix and the equation constant vector for the matrix equation $AX = B$. Find the solution vector $X = A^{-1}B$.

$$A = \begin{bmatrix} 3 & 4 \\ 8 & 11 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
9. (18 points) A remote island economy has 2 industries: papayas and mangos. Producing $1 of papayas requires $0.40 of papayas and $0.10 of mangos. Producing $1 of mangos requires $0.20 of papayas and $0.80 of mangos. A nearby island demands $3000 of papayas and $1000 of mangos.

(a) Determine the consumption matrix, A.

(b) Determine the demand matrix, D.

(c) Compute $I - A$.

(d) Find the inverse \((I - A)^{-1}\). Simplify your answer.

(e) Determine the production vector for the given external demand.

(f) Determine if the economy is productive.
10. (9 points) Given matrix A, find the inverse matrix A^{-1}, if it exits. Clearly label what you are doing in each step.

$$A = \begin{bmatrix} 1 & 2 & -3 \\ -1 & -1 & 4 \\ 1 & 4 & 0 \end{bmatrix}$$