Name: __________________________

“We’re still pioneers, we barely begun. Our greatest accomplishments cannot be behind us, cause our destiny lies above us.” - Cooper, Interstellar

ANNOUNCEMENT: Quiz #10 on sections 4.2, 5.5, 6.1 will be given out during the first 15 mins of class on Thursday.

1. Evaluate the following definite integral.

a) \(\int_0^1 \frac{6x + 3}{x^2 + x + 5} \, dx \)

b) \(\int_0^{\pi/2} \frac{\cos x}{e^{\sin x}} \, dx \)

c) \(\int_0^{\pi/3} \tan^3 x \sec^2 x \, dx \)

d) \(\int x^5 \sqrt{1 - x^2} \, dx \)
2. Explain carefully why $f(x) = x^7 + 5x^3 + 2x - 20$ cannot have two real roots.

3. Set up, but do not evaluate, one or more integrals which represent the area of the finite region bounded by the curves $y = x - 1$ and $x = 7 - y^2$.
4. Consider the finite region bounded by the curves $x = \frac{1}{2}y^2$ and $y = x^2$. In the following manner set up, but do not evaluate, definite integrals which represent the area of this region.

1. Integrate with respect to x.

2. Integrate with respect to y. (The integrands in parts (a) and (b) should be different.)

5. The area of the region bounded by the graphs of $y = x^3$ and $y = x$ cannot be found by the single integral $\int_{-1}^{1} x^3 - x \, dx$. Explain why this is so. Use symmetry to write a single integral that does represent the area.
CHALLENGE: I’ll discuss this in detail on Thursday.

6. Let R be the region bounded by the x-axis and the graph of $y = e^{-x}$ on the interval $[1, 3]$. Set up, but do not evaluate, definite integrals which represent the given quantities. Use proper notation.

a) The volume of the solid obtained when R is revolved around the line $y = 2$.

b) The volume of the solid with base R for which the cross-sections perpendicular to the x-axis are squares.