Number theorists and combinatorists like to study sequences

\[a = (a_0, a_1, \ldots) \in \mathbb{C}^N. \]

One standard technique is to associate with \(a \) its generating function

\[f := \sum_{n=0}^{\infty} a_n X^n. \]

We use the capital letter to emphasize that \(X \) is more a place-holder than a variable. We do not care about the convergence in making this definition. (If the series \textit{does} have a positive radius of convergence, then it is desirable to treat it as an analytic function, and write \(f(X) \).) Technically speaking a generating function is a \textit{formal power series}. If \(R \) is a ring, then \(R[[X]] \) is defined to be the \textit{ring of formal power series in \(R \)}. Typically, \(R = \mathbb{C} \), although it is not uncommon for all objects to live in \(\mathbb{Z}[[X]] \). It is sensible to take \((\mathbb{Z}/d\mathbb{Z})[[X]]\), when one is interested in the \(a_k \)'s mod \(d \).

If \(a_n = 0 \) for \(n > N \), then \(f \) is a polynomial, and we will treat it as such.

The operations in \(R[[X]] \) are the familiar natural ones; we act as if the elements are ordinary convergent power series, so

\[f = \sum_{n=0}^{\infty} a_n X^n, \quad g = \sum_{n=0}^{\infty} b_n X^n \implies f + g = \sum_{n=0}^{\infty} (a_n + b_n) X^n, \]

\[fg = \sum_{n=0}^{\infty} c_n X^n, \quad \text{where} \quad c_n = \sum_{k=0}^{n} a_k b_{n-k}. \]

It should be noted that \(\mathbb{C}[[X]] \) is also a vector space over \(\mathbb{C} \), and this is extremely useful in discussing recurrences. Suppose \(\lambda_1, \ldots, \lambda_k \) are fixed and

\[A_\lambda = \{ f = \sum_{n=0}^{\infty} a_n X^n : a_n = \lambda_1 a_{n-1} + \cdots + \lambda_k a_{n-k}, \quad n \geq k \}. \]

That is, \(A_\lambda \) is the set of all generating functions of sequences satisfying a particular linear recurrence. Then it is easy to see that \(A_\lambda \) is a \(k \)-dimensional vector space, and if we can find \(k \) linearly independent elements in it, we will have gone a long way towards solving the recurrence.
One appeal of generating functions is that natural operations on the sequence are often easily expressed in the generating function. For example;

\[X^k \cdot \sum_{n=0}^{\infty} a_n X^n = \sum_{n=0}^{\infty} a_{n-k} X^n; \]
\[\sum_{n=0}^{\infty} X^n \cdot \sum_{n=0}^{\infty} a_n X^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k \right) X^n; \]
\[\sum_{n=0}^{\infty} X^{tn} \cdot \sum_{n=0}^{\infty} a_n X^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\lfloor n/t \rfloor} a_{n-kt} \right) X^n; \]
\[(1 - \lambda_1 X - \cdots - \lambda_k X^k) \cdot \sum_{n=0}^{\infty} a_n X^n = \cdots + \sum_{n=k}^{\infty} (a_n - \lambda_1 a_{n-1} - \cdots - \lambda_k a_{n-k}) X^n. \]

The degree of \(f \), \(\deg(f) \), is the smallest index \(n \) for which \(a_n \neq 0 \). Put another way, \(\deg(f) \geq n \iff f = x^ng \) for some \(g \in R[[x]] \), or \(f \in x^nR[[x]] \). It is customary to say that the 0 element has \(\deg = \infty \). It is routine to verify that, if \(\deg(f-f'), \deg(g-g') \geq n \), then \(\deg((f+g)-(f'+g')) \geq n \) and \(\deg(fg-f'g') \geq n \). If \(a_0 \) is invertible, then \(f = \sum_{n=0}^{\infty} a_n X^n \) is also invertible. In fact, letting \(g = \sum_{n=0}^{\infty} b_n X^n \), take \(b_0 = a_0^{-1} \) and, recursively, \(b_n = -a_0^{-1} \sum_{k=1}^{n} a_k b_{n-k} \), to ensure that \(fg = 1 \).

We impose a curiously strict topology on \(R[[X]] \), based on the idea that \(R \) itself might not have many open sets – think \(R = \mathbb{Z} \). Let \((f_r) \) be a sequence of formal power series, then we say that \(f_r \) converges to \(f \) if \(\deg(f_r - f) \to \infty \). That is, for every \(n \) there exists \(M \) so that if \(r \geq M \) and \(j \leq n \), then the coefficient of \(x^j \) in \(f_r \) equals the coefficient of \(x^j \) in \(f \). This is not the standard definition of convergence; for example, it is always true that

\[\lim_{N \to \infty} \sum_{n=0}^{N} a_n X^n = \sum_{n=0}^{\infty} a_n X^n. \]

Under this definition, if \(\deg h \geq 1 \), then \(\sum_{n=0}^{\infty} h^n \) will converge, and its sum will be, as we might hope, \((1 - h)^{-1} \). Indeed,

\[\sum_{n=0}^{N} h^n = \frac{1 - h^{N+1}}{1 - h} = \frac{1}{1 - h} + \Phi_N, \]
where \(\deg \Phi_N = (N+1)(\deg h) \to \infty \). Another odd, and useful, fact is that if we let

\[f_N = \sum_{n=0}^{\infty} a_n X^{nN}, \]
then f_N converges to a_0. In the fortunate circumstance that f has a positive radius of convergence, it is sensible to write $f(X^n) \to a_0$.

As an example of the sort of question to which one might want a generating function which does not converge, consider this: Given $n \in \mathbb{N}$, compute

$$e_n := \sum_{j_1 + \cdots + j_n = n} \frac{(j_1 + \cdots + j_n)!}{j_1! \cdots j_n!} 1^{j_1} \cdots n^{j_n}.$$

This looks awful, but it has a reasonable interpretation. The sum, taken first over those j’s with $j_1 + \cdots + j_n = k$, is just the coefficient of x^n in

$$(1!x^1 + 2!x^2 + \cdots + n!x^n + \cdots)^k,$$

and, after summing on k, we see that

$$1 + \sum_{n=1}^\infty e_n X^n = \frac{1}{1 - \sum_{n=1}^\infty n! X^n}.$$

We are particularly interested in infinite products of a particular kind. Suppose $\deg(g_n) \to \infty$ and define

$$\prod_{n=1}^\infty (1 + g_n) := \lim_{N \to \infty} \prod_{n=1}^N (1 + g_n).$$

It is routine to verify that the coefficient of x^j stabilizes once $\deg(g_n) > j$. The most vital infinite product in number theory is quite simple:

$$\prod_{n=0}^\infty (1 + X^{2^n}) = \frac{1}{1 - X}.$$

The proof of this formula is simply a telescoping product

$$\prod_{n=0}^N (1 + X^{2^n}) = \prod_{n=0}^N \frac{1 - X^{2^{n+1}}}{1 - X^{2^n}} = \frac{1 - X^{2^{N+1}}}{1 - X} = \frac{1}{1 - X} + \Phi_N,$$

where $\deg \Phi_N = 2^{N+1} \to \infty$. It is important to note that this definition of infinite product is different from the standard definition in complex variables. For example

$$\prod_{n=1}^\infty (1 + n^n X^n)$$

is a perfectly well-defined infinite product, even though, as a power series, it would converge only for $X = 0$. On the other hand, Euler’s famous infinite product,

$$\frac{\sin(\pi X)}{\pi X} = \prod_{n=1}^\infty \left(1 - \frac{X^2}{n^2}\right),$$

is not convergent under this definition.
Suppose \(A = \{a_0 < a_1 \cdots < a_m\} \) is a finite subset of \(\mathbb{N} \). We define the characteristic generating function \(I_A \) by
\[
I_A = \sum_{a \in A} X^a = \sum_{j=0}^{m} X^{a_j}.
\]
(17)

If \(A \) and \(B \) are two such finite subsets, then since these are finite sums,
\[
I_A I_B = \sum_{j=0}^{m} X^{a_j} \sum_{k=0}^{\ell} X^{b_k} = \sum_{j=0}^{m} \sum_{k=0}^{\ell} X^{a_j+b_k},
\]
and we see that the coefficient of \(X^n \) in \(I_A I_B \) is simply the number of ways to write \(n = a_j + b_k \). This clearly generalizes to finite numbers of finite subsets of \(\mathbb{N} \), and we would like to consider (possibly) infinite collections of (possibly) infinite subsets of \(\mathbb{N} \).

Theorem 1. Suppose
\[
A_k = \{0 = a_{k0} < a_{k1} < \cdots \} \subseteq \mathbb{N},
\]
either for \(k = 1, \cdots M \), or for \(k \in \mathbb{N} \), under the condition that \(\lim_{k \to \infty} a_{k1} = \infty \). Then
\[
\prod_k I_{A_k} = \sum_{n=0}^{\infty} c_n X^n,
\]
(19)
where \(c_n \) is the number of ways to write
\[
n = a_{1,r_1} + a_{2,r_2} + \cdots .
\]
(20)

Proof. It suffices to prove that each particular \(n, c_n \) has this interpretation. Let us define
\[
A_k^{(n)} = A_k \cap \{0, 1, \ldots, n\}.
\]
Clearly, in any representation of \(n \) as a sum of \(a_{j,r_j} \)'s, we will have \(a_{j,r_j} \in A_k^{(n)} \), so the number of representations of \(n \) is not affected by this restriction. In the same way, replacing \(\prod_k I_{A_k} \) with \(\prod_k I_{A_k^{(n)}} \) will only change terms with exponents larger than \(n \). Furthermore, even if we started with an infinite set of \(A_k \)'s, since \(a_{k1} \to \infty \), only finitely many factors \(I_{A_k^{(n)}} \) will not be equal to 1. Thus, in any case, it suffices to consider the coefficient of \(X^n \) in the finite product
\[
\prod_k I_{A_k^{(n)}},
\]
and this is what we have already done. \(\square \)

In the most notorious example, let \(A_k = \{0, 2^k\}, k \geq 0 \) and since
\[
\prod_{k=0}^{\infty} I_k = \prod_{k=0}^{\infty} (1 + X^{2^k}) = \frac{1}{1-X} = \sum_{n=0}^{\infty} X^n,
\]
(21)
we recover the economically useful fact that every integer \(n \) has a unique representation of the form

\[
n = \sum_{k=0}^{\infty} \epsilon_k(n)2^k, \quad \epsilon_k(n) \in \{0, 1\}.
\]

Now let

\[
b(n) := \sum_{k=0}^{\infty} \epsilon_k(n)
\]

denote the sum of the binary digits of \(n \), and consider the infinite product

\[
(22) \quad \Theta(X, Y) = \prod_{k=0}^{\infty} (1 + Y \cdot X^{2^k}).
\]

Interlude

It is not hard to see that \((R[[X]])[[Y]]\), \((R[[Y]])[[X]]\) and \(R[[X, Y]]\) all represent the set of all objects; namely, formal series in two variables that look like

\[
(23) \quad \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk}X^jY^k,
\]

with \(a_{jk} \in R\). However, the topology in the three cases is different. Note that

\[
(24) \quad \sum_{n=1}^{\infty} (X^n + Y^n)
\]

does not converge in either \((R[[X]])[[Y]]\) or \((R[[Y]])[[X]]\). For example, in \((R[[X]])[[Y]]\), \(X^n\) is in the base-ring, so it has degree 0, and so the degree of the summands is always 0, and doesn’t go to \(\infty\). This is silly, because the sum *obviously* converges, and as an element in \(R[[X, Y]]\), the monomial has degree \(n\), which does go to \(\infty\). To make convergence work in \(R[[X, Y]]\), you have to take the total degree of the monomials and show that, for all \(N\), there are only finitely many monomials with degree < \(N\). In the example of interest, the product for \(\Theta\) converges as an element in \((R[[Y]])[[X]]\) (the factors are 1 plus a term of degree \(2^k\)), but the product does not converge as an element in \((R[[X]])[[Y]]\), since each factor is only linear in \(Y\). This is the sort of mathematics that led me as a grad student to have evil, and incorrect thoughts about the value and beauty of algebra. In this class, we’ll say that \(\Theta\) converges.

Back to our story

In fact, it’s easy to see that

\[
(25) \quad \Theta(X, Y) = \sum_{n=0}^{\infty} Y^{b(n)}X^n.
\]
If you want to take it the other way around, then

\[(26) \Theta(X, Y) = \sum_{m=0}^{\infty} a_m(X)Y^m, \quad \text{where} \quad a_m(X) = \sum_{0 \leq i_1 < i_2 < \cdots < i_m} X^{2i_1 + \cdots + X^{2i_m}}.\]

If \(A = \{1 \leq a_0 < a_1 < \cdots \} \subseteq \mathbb{Z},\) then a partition of \(n\) from \(A\) is a sum \(n = a_{i_0} + a_{i_1} + \cdots\) in which \(i_0 \leq i_1 \leq \cdots\). One counts the number of times a given element \(a_j\) appears in a summation and so we are writing \(n\) as a sum taken from the sets \(a_j\mathbb{N}\), and in the terminology of the theorem, the generating function for the number of partitions of \(n\) from \(A\) is simply

\[(27) \prod_{j \geq 0} (1 + X^{a_j} + X^{2a_j} + \cdots) = \prod_{j \geq 0} \frac{1}{1 - X^{a_j}}.\]

A partition of \(n\) into distinct parts is one in which each \(a_j\) occurs at most once, so \(A_j = \{0, a_j\}\). The generating function for the number of partitions of \(n\) into distinct parts from \(A\) is

\[(28) \prod_{j \geq 0} (1 + X^{a_j}).\]

One of the most beautiful classical theorems in partition theory is that the number of partitions of \(n\) into odd parts (i.e., \(A = 2\mathbb{N} + 1\)) is equal to the number of partitions of \(n\) into distinct parts from \(\mathbb{N}\). One proof of this is that the two generating functions are equal (there are other proofs). Indeed,

\[(29) \prod_{k=1}^{\infty} (1 + X^k) = \prod_{k=1}^{\infty} \frac{1 - X^{2k}}{1 - X^k} = \frac{\prod_{k=1}^{\infty} (1 - X^{2k})}{\prod_{k=1}^{\infty} (1 - X^k)} = \prod_{j=0}^{\infty} \frac{1}{1 - X^{2j+1}}\]

since the terms with even exponents in the numerator cancel out in the denominator, leaving the terms with odd exponents. This proof is rigorous, since you can equate the coefficients of the partial products of both sides, up to ever-increasing degree.

Remember the Stern sequence? Let

\[(30) \mathcal{S}(X) = \sum_{n=0}^{\infty} s(n)X^n = XT(X).\]

(We can define \(T(X)\) in this way because \(s(0) = 0\).) We have already shown that \(1 \leq s(n) \leq n\), hence \(\lim(s(n))^{1/n} = 1\) and so \(\mathcal{S}(x)\) has radius of convergence 1, and is analytic on the open unit disk. It is therefore reasonable to talk about \(\mathcal{S}(X^r)\), as we shall below.
By breaking up the sum into even and odd indices, we obtain an interesting equation satisfied by S.

$$S(X) = \sum_{n=0}^{\infty} s(2n)X^{2n} + \sum_{n=0}^{\infty} s(2n+1)X^{2n+1}$$

(31) $$= \sum_{n=0}^{\infty} s(n)X^{2n} + \sum_{n=0}^{\infty} s(n)X^{2n+1} + \sum_{n=0}^{\infty} s(n+1)X^{2n+1}$$

By reindexing the third sum, we see that

$$S(X) = (1 + X + X^{-1})S(x^2)$$

(32) $$\implies XT(X) = (1 + X + X^{-1})X^2T(X^2)$$

$$\implies T(X) = (1 + X + X^2)T(X^2).$$

Now feed this last equation into itself repeatedly, to get

$$T(X) = \left(\prod_{j=0}^{N-1} (1 + X^{2j} + X^{2j+1}) \right) \cdot T(X^{2N}),$$

(33)

and since $T(X^{2N}) \to 1$, we conclude that, as an analytic function as well as a formal power series,

$$S(X) = XT(X) = X \prod_{j=0}^{\infty} (1 + X^{2j} + X^{2j+1}).$$

(34)

The coefficient of X^n in $T(X)$ is $s(n-1)$ and $T(X)$ is the generating function of sums from the sets $\{0, 2^j, 2 \cdot 2^j\}$. Thus, we obtain another proof of the last theorem in the first section.

We close this section with a few applications of generating function. We suspect there we have missed some interesting ones. Using the previous definition, let

$$\Theta(X, -1) = \prod_{k=0}^{\infty} (1 - X^{2k}) = \sum_{n=0}^{\infty} (-1)^{b(n)} X^n.$$

(35)

Observe that

$$S(X) = X \prod_{j=0}^{\infty} (1 + X^{2j} + X^{2j+1}) = X \prod_{j=0}^{\infty} \frac{1 - X^{3 \cdot 2^j}}{1 - X^{2j}} = X \cdot \Theta(X^3, -1) \cdot \Theta(X, -1).$$

(36)

Upon cross-multiplying, we find that

$$\Theta(X, -1)S(X) = X \Theta(X^3, -1),$$

(37)

and by taking the coefficient of X^{3k+r} on both sides, we find peculiar recurrences:

$$\sum_{j=0}^{3k+r} s(j)b(3k + r - j) = 0, \quad (r = 0, 2); \quad \sum_{j=0}^{3k+1} s(j)b(3k + 1 - j) = b(n).$$

(38)
It is also true that
\[\frac{1}{\Theta(X, -1)} = \prod_{k=0}^{\infty} \frac{1}{1 - X^{2^k}} = \sum_{n=0}^{\infty} b(n, \infty) X^n \]
gives the generating function for the so-called binary partition function, which counts the number of partitions from the set of powers of 2. (These were studied by Churchhouse and others in the 60’s.) From this point of view, we have
\[S(X) = X \cdot \frac{\Theta(X^3, -1)}{\Theta(X, -1)} = \sum_{n=0}^{\infty} \frac{b(n, \infty) X^n}{\sum_{n=0}^{\infty} b(n, \infty) X^{3n}}, \]
and so we get another recurrence:
\[\sum_{j=0}^{n} s(n - 3j)b(j, \infty) = b(n - 1, \infty). \]

We may look at the generating function \(S(X) \) over \((\mathbb{Z})/(2\mathbb{Z})\):
\[S(X) = X \prod_{j=0}^{\infty} (1 + X^{3-2^j}) \prod_{j=0}^{\infty} \frac{1}{1 + X^{2^j}} = X \cdot \frac{1}{1 - X^3} \cdot (1 - X) = \frac{X + X^2}{1 - X^3}, \]
from which it is easy to see that \(s(n) \) is even only when \(3 \mid n \). We haven’t found any useful versions mod \(d \) for \(d \geq 3 \); however, \(1 + X + X^2 \equiv (1 - X)^2 \) mod 3, so
\[S(X) \equiv X\Theta(X, -1)^2 \mod 3. \]

One final application is an observation due to Richard Stanley, which appeared on the second floor of Illini Hall in the 1980’s. Let \(\epsilon = e^{\pi i/3} = \frac{1}{2} + \frac{i\sqrt{3}}{2} \); \(\epsilon \) is a primitive 6-th root of unity, and \((1 + \epsilon x)(1 + \epsilon^{-1} x) = 1 + x + x^2 \). It follows that
\[S(X) = X \prod_{j=0}^{\infty} (1 + \epsilon X^{2^j}) \prod_{j=0}^{\infty} (1 + \epsilon^{-1} X^{2^j}) = X\Theta(X, \epsilon)\Theta(X, \epsilon^{-1}) \]
\[\Rightarrow s(n) = \sum_{k=0}^{n-1} \epsilon^{b(k) - b(n-1-k)}, \]
The sum above is not a priori positive, and suggests an unexpected pattern in \(b(n) \) (mod 6).

Notes I, p.6, (32): the formula at the very end is wrong! Please make this change:
\[b = a + \frac{1}{s(n')}, \]
Notes I (supp), p.3, l.7-: “helpfulin” → “helpful in”.
Notes II (for the rest of this list), p. 1, l.6:- insert “\(\lambda = (\lambda_1, \ldots, \lambda_k) \)”.