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Abstract

Pólya’s Theorem says that if p is a homogeneous polynomial in n variables which is posi-
tive on the standard n-simplex, and F is the sum of the variables, then for a sufficiently large
exponent N , F N ∗p has positive coefficients. Pólya’s Theorem has had many applications in
both pure and applied mathematics, for example it provides a certificate for the positivity
of p on the simplex. The authors have previously given an explicit bound on N , determined
by the data of p; namely, the degree, the size of the coefficients and the minimum value of p
on the simplex. In this paper, we extend this quantitative Pólya’s Theorem to non-negative
polynomials which are allowed to have simple zeros at the corners of the simplex.

1 Introduction

Fix a positive integer n and let R[X] := R[x1, . . . , xn]. We use the following
polynomial notation: Given α ∈ Nn, say α = (α1, . . . , αn), we denote by Xα the
monomial xα1

1 . . . xαn
n and write |α| for α1 + · · · + αn. For u = (u1, . . . , un) ∈ Rn,

we similarly write uα for uα1
1 . . . uαn

n ∈ R. We denote the standard n-simplex
{(x1, . . . , xn) | xi ≥ 0,

∑
i xi = 1} by ∆n.

Pólya’s Theorem says that if a form (homogeneous polynomial) p ∈ R[X] is
positive on ∆n, then for sufficiently large N all the coefficients of

(x1 + · · ·+ xn)N ∗ p(x1, . . . , xn)

are positive. This elegant and beautiful result has many applications, both in pure
and applied mathematics.

Pólya’s theorem appeared in 1928 [10] (in German) and is also in Inequalities
by Hardy, Littlewood, and Pólya [8] (in English). It is interesting to note that
they realized the algorithmic nature of the result; in the book they write
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The theorem gives a systematic process for deciding whether a given
form F is strictly positive for positive x. We multiply repeatedly by∑

xi and, if the form is positive, we shall sooner or later obtain a form
with positive coefficients.

Pólya’s proof is elementary: for p positive on ∆n of degree d, he constructs a
sequence of real polynomials pε in n variables such that pε converges uniformly to
p on ∆n as ε → 0 and so that for |β| = N + d, the coefficient of Xβ in (

∑
xi)

N ∗ p
is a positive multiple of pε(

β
N+d

) for ε = 1
N+d

. Then, since pε > 0 for sufficiently

small ε, it follows that for sufficiently large N , each coefficient of Xβ is positive.
By analyzing Pólya’s proof, the authors in [11] were able to give an explicit

bound on the N needed in the theorem. If |α| = d, define c(α) := d!
α1!···αn!

. Suppose

f ∈ R[X] is homogeneous of degree d, then write

f(X) =
∑
|α|=d

aαXα =
∑
|α|=d

c(α)bαXα,

and let L = L(f) := max
|α|=d

|bα| and λ = λ(f) := min
X∈∆n

f(X).

Theorem 1. Suppose that f ∈ R[X] is a given as above. If

N >
d(d− 1)

2

L

λ
− d,

then (x1 + · · ·+ xn)Nf(x1, . . . , xn) has positive coefficients.

We describe a few applications of Pólya’s Theorem and this bound. In 1940,
Habicht [5] used Pólya’s Theorem to give a direct proof of a special case of Hilbert’s
17th Problem, namely, he used it to prove that a positive definite form is a sum
of squares of rational functions. More recently, M. Schweighofer [12] used Pólya’s
Theorem to give an algorithmic proof of Schmüdgen’s Positivstellensatz, which
says that if the basic closed semialgebraic set K = {g1 ≥ 0, . . . , gk ≥ 0} is compact
and f > 0 on K, then f is in the preorder generated by the gi’s. This can be used
to give an algorithm for optimization of polynomials on compact semialgebraic
sets, see [13] for details. Using the bound for Pólya’s Theorem, Schweighofer
obtained complexity bounds for Schmüdgen’s Positivstellensatz [14].

Pólya’s Theorem has been used in the study of copositive programming. Let
Sn denote the n× n symmetric matrices over R and define the copositive cone

Cn = {M ∈ Sn | Y T MY ≥ 0 for all Y ∈ Rn
+}.

Copositive programming is optimization over Cn. By Pólya’s Theorem, the trun-
cated cones

Cr
n := {M ∈ Sn |

(∑
ixi

)r ∗XT MX has non-negative coefficients }
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will converge to Cn and using linear programming, membership in Cr
n can be

determined numerically. De Klerk and Pasechnik [4] use this fact, along with the
bound for Pólya’s Theorem, to give results on approximating the stability number
of a graph.

Motzkin and Strauss [9] partially generalized the theorem to power sequences
in several variables and Catlin and D’Angelo [1, 2] generalized the theorem to
polynomials in several complex variables. Handelman [6, 7] has studied a related
question, namely, for which pairs (q, f) of polynomials does there exist N ∈ N
so that qN ∗ f has nonnegative coefficients? (See also de Angelis and Tuncel
[3].) Pólya’s Theorem and the generalization described in this paper (without the
bound) can be deduced from Handelman’s work. It also follows (again, without
the bound) from recent work of Schweighofer [15].

In this paper we discuss an extension of Pólya’s Theorem to the case where
the form p has zeros on ∆n. By methods similar to those used in [11] to prove
Theorem 1, we give a bound on the N needed in the case where p is positive on
∆n except for possible zeros at the “corners” of the simplex; the bound is in terms
of information about the coefficients of p and the minimum of p on ∆n away from
the zeros.

Remark 1. By “positive coefficients” we mean that every coefficient that is non-
zero is positive. If a form p is strictly positive on ∆n, then Pólya’s Theorem shows
that there is N so that every monomial in (x1+· · ·+xn)Np has a positive coefficient.
However this will not be possible if p has zeros on ∆n, e.g., if p(1, 0, . . . , 0) = 0
then the coefficient of xN+d

1 in (x1 + · · ·+ xn)Np will always be zero.

2 Pólya’s Theorem for forms non-negative on the simplex

Let Pn,d(∆n) denote the closed cone of degree d forms in n variables which are
non-negative on ∆n and let Po(n, d) be the degree d forms in n variables which
satisfy Pólya’s Theorem, i.e., p ∈ Po(n, d) if there is some N such that every
monomial in (x1 + · · · + xn)Np has a positive coefficient. For ease of exposition,
denote the form x1 + · · ·+ xn by F .

Given p ∈ R[X] of degree d, write

p =
∑
|α|≤d

aαXα;

we let supp(p) denote {α | aα 6= 0}. We write e1, . . . , en for the vertices of ∆n,
i.e., e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Suppose p ∈ Pn,d(∆n) and p has a zero on the interior of ∆n, say p(u) = 0 for
u = (u1, . . . , un) ∈ ∆n with ui > 0 for all i. Then it is not too hard to see that
p 6∈ Po(n, d). For every N ∈ N, if FNp =

∑
cαXα, then 0 =

∑
α cαuα and uα > 0

for all α, hence at least one cα must be negative. On the other hand, p = x1 · · ·xn
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is trivially in Po(n, d) and has p(u) = 0 for every u on the boundary of ∆n. Also,
if p vanishes at an interior point of a face of ∆n, then p vanishes everywhere on
the face and has a monomial factor, hence it makes sense to restrict our attention
to zeros on faces of co-dimension at least 2.

We note also that it is possible to have p ∈ Po(n, d), but not in Po(n + 1, d)
when p is considered as a form in n + 1 variables. Let p = x2 − xy + y2, then
(x + y)p = x3 + y3 and hence p ∈ Po(2, 2). However, for every N , the coefficient
of x1y1zN in (x + y + z)N(x2 − xy + y2) is −1, thus p 6∈ Po(3, 2).

Example 1. The following forms are non-negative on ∆3 with zeros only at the
unit vectors:

f = xz3 + yz3 + x2y2 − xyz2,

g = x2y + xy2 − 3xyz.

We claim f 6∈ Po(3, 3), but g ∈ Po(3, 3). Consider the coefficient of xN+1yz2 in
FN ∗ f . There is no contribution from FNxz3 or FNyz3 because the power of z is
too large and there is no contribution from F nx2y2 because the power of y is too
large. Hence the only contribution comes from FN(−xyz2) and thus the coefficient
will always be −1. On the other hand, it is easy to compute that F 3g has only
positive coefficients. This shows that the location of the zeros of p ∈ Pn,d(∆n) is
not enough to determine if p is in Po(n, d) or not.

Definition 1. The form p ∈ Pn,d(∆n) has a simple zero at the unit vector ej

if the coefficient of xd
j in p is zero, but the coefficient of xd−1

j xi is non-zero (and
necessarily positive) for each i 6= j. In other words, supp(p) contains (d−1) ·ej +ei

for i 6= j, but not d · ej. Geometrically, this means that when p is restricted to
lines through ej and another point in ∆n, it has only a simple zero at ej.

For r ∈ R, 0 < r < 1 and j = 1, . . . , n, let ∆n(j, r) denote the simplex with
vertices {ej} ∪ {ej + r(ei − ej) | i 6= j}. For example, D3(2, r) is the triangle with
vertices {(0, 1, 0), (r, 1 − r, 0), (0, 1 − r, r)}. Hence ∆n(j, r) is the scaled simplex
r ·∆n translated by (1− r)ej.

Lemma 1. If p ∈ Pn,d(∆n) has a simple zero at ej, then there exist s, r > 0 such
that

p(u1, . . . , un) ≥ s(u1 + · · ·+ uj−1 + uj+1 + · · ·+ un) (1)

for all u = (u1, . . . , un) ∈ ∆n(j, r).

Proof. For i 6= j, let vi = ∂p
∂xi

(ej), which is the coefficient of xd−1
j xi. By assumption,

vi > 0. It follows from the Taylor series of p at ej that for t = (t1, . . . , tn),

p(t1, . . . , tj−1, 1, tj+1, . . . , tn) =
∑

iviti + o(|t|).
Let v = 1

2
min vj, then for sufficiently small t we have

p(t1, . . . , tj−1, 1, tj+1, . . . tn) ≥ v ·
∑
i6=j

ti.
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If u ∈ ∆n(j, r), then by homogeneity p(u) = xd
jp(t1, . . . , tj−1, 1, tj+1, . . . , tn) where

ti := xi/xj for i 6= j. Since xd
j ≥ (1− r)d, we can take s = v(1− r)d.

Our goal is to find a quantitative version of Pólya’s Theorem which applies to
polynomials which are positive on ∆n, except for some simple zeros at the vertices.
We begin with the case of a single simple zero, which we take at e1, without loss
of generality.

We fix some notation. Suppose p ∈ Pn,d(∆n) is positive on ∆n except for
a simple zero at e1. Let s, r > 0 be as in Lemma 1 and define the following
constants associated to p. Let P be the closure of ∆n with the corner ∆n(1, r)
removed and let λ be the the minimum of p on P . Define M to be the size of
the largest coefficient of p, i.e., M := max{|aα| | α ∈ supp(p)} and set L = L(p).
Finally, for β = (β1, . . . , βn) ∈ Nn define

c(β) :=
∏
βi≥2

βi(βi−1)
2

and c :=
∑

α∈supp(p)

c(α).

Proposition 1. Suppose p is positive on ∆n except for a simple zero at e1. With
the notation as above, if

N > max

(
d(d− 1)

2

L

λ
− d,

cM

s
− d

)
,

then FN ∗ p has positive coefficients, and hence p ∈ Po(n, d).

Proof. We proceed as in [10] and [11]. For positive t ∈ R, m ∈ N and a single real
variable y, define

(y)m
t := y(y − t) · · · (y − (m− 1)t) =

m−1∏
i=0

(y − it) .

and
pt(u1, . . . , un) :=

∑
α∈supp(p)

aα(xi)
α1
t . . . (xn)αn

t .

For ease of exposition, set t = 1
N+d

. Then we have

Aβ =
N !(N + d)d

β1! · · · βn!
pt

(
β1

N+d
, . . . , βn

N+d

)
, (2)

Thus to show Aβ > 0, we need

pt(
β1

N+d
, . . . , βn

N+d
) > 0.

Let z = (β1t, . . . , βnt) ∈ ∆n. Assume z ∈ P , then the proof of Theorem 1 in [11]

shows that for N > d(d−1)
2

L
λ
− d, pt(z) > 0 and hence Aβ > 0.
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Now suppose z ∈ ∆n(1, r) and let N = cM
s
− d. Our goal is to show that

pt(z) > 0. As in [11], we write

pt(z) = p(z)−
∑

α∈supp(p)

aα (zα − (z1)
α1
t . . . (zn)αn

t ) (3)

We have the bound
p(z) ≥ s(z2 + · · ·+ zn), (4)

so we consider the summation in (3). As in the proof of Theorem 1 in [11], it is
easy to see that for 0 ≤ y ≤ 1 and k ≥ 2,

(y)k
t ≥ yk − k(k−1)

2
tyk−1; (5)

this also holds for k = 1 trivially. Then, using (5), we have

∣∣∣∣∣∣
∑

α∈supp(p)

aα

(
zα − (

n∏
i=1

(zi)
αi
t )

)∣∣∣∣∣∣ <
M

∣∣∣∣∣∣
∑

α∈supp(p)

(
zα −

n∏
i=1

(zαi
i − αi(αi−1)

2
· t · zαi−1

i

)∣∣∣∣∣∣ =

M

∣∣∣∣∣∣
∑

α∈supp(p)

[
zα − zα

n∏
i=1

(
1− αi(αi−1)

2
· t · 1

zi

)]∣∣∣∣∣∣ =

M

∣∣∣∣∣∣
∑

α∈supp(p)

[
zα ·

(∏
αi≥2

αi(αi−1)
2

· t · 1

zi

)]∣∣∣∣∣∣
Now, because p has a simple zero at e1, for every α ∈ supp(p) and every i with
αi ≥ 2, the monomial zα/zi contains at least one of {z2, . . . , zn}. It follows that

M

∣∣∣∣∣∣
∑

α∈supp(p)

(
zα ·

∏
αi≥2

αi(αi−1)
2

· t · 1

zi

)∣∣∣∣∣∣ ≤
∑

α∈supp(p)

c(α) · t · (z2 + · · ·+ zn),

recalling that c(α) =
∏

αi≥2
αi(αi−1)

2
.

Combining this with (3) and (4), we have

pt(z) >

s− M

N + d

∑
α∈supp(p)

c(α)

 (z2 + · · ·+ zn) >

(
s− Mc

N + d

)
(z2+· · ·+zn).

Since z2 + · · ·+ zn > 0 and s− Mc
N+d

> 0, we conclude that pt(z) > 0.
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Remark 2. We note that the bound in Proposition 1 does not depend on n, the
number of variables. Also, observe that as r → 0, λ →∞ because p has a zero at
e1. On the other hand, s is bounded and thus the choice of r is more important
to the bound from the main part of ∆n than the bound from the corner.

Corollary 1. Suppose p ∈ Pn,d(∆n) is positive on ∆n except for simple zeros at
unit vectors ej1 , . . . , ejk

. Then p ∈ Po(n, d) and there is a bound for N so that
FNp has only positive coefficients similar to the bound in Proposition 1.

Note that in the Corollary, the simplex P is replaced by the unit simplex with
k corners snipped off and s will be replaced by the minimum of the s’s obtained
by applying Lemma 1 to each simple zero.

Example 2. For 0 < α < 6, let

pα(x, y, z) := x(y − z)2 + y(x− z)2 + z(x− y)2 + αxyz.

Note that the first three terms give a form non-negative on D3 with zeros at the
unit vectors and (1

3
, 1

3
, 1

3
), thus pα is psd on D3 with zeros at the unit vectors and is

symmetric in {x, y, z}. We will compute the bound from the proposition, directly
compute the minimum N so that FN ∗ p has positive coefficients, and compare
the two.

We start by assuming we have r as in Lemma 1 and compute the minimum
of p on the simplex P ; recall that P is D3 minus the three corners D3(j, r). We
are interested in the behavior as α → 0, so we may as well assume α < 1. It is a
straightforward calculus exercise to compute the minimum of p on P : the interior
extreme values occur at (1

3
, 1

3
, 1

3
) and all three permutations of ( 1

9−α
, 1

9−α
, 7−α

9−α
).

Assuming α < 1, the smallest value of pα occurs at the centroid and equals α
27

.
Finding the minimum on the boundary of P involves two line segments, one from
(r, 1 − r, 0) to (1 − r, r, 0), and the other from (1 − r, r, 0) to (1 − r, 0, r). In the
first case, z = 0 and the minimum is clearly r(1 − r). In the second case, an
easy calculation shows that the minimum occurs at (1 − r, r

2
, r

2
); the exact value

is r − 3r2 + r2

4
(α(1 − r) + 9r) > r − 3r2. If we assume r small enough, say

r ≤ α
18

, then the minimum value of p on P is λ = α
27

. The remaining constants are

L = min{1, 6−α
6
} = 1 and d = 3 and so one bound is equal to 81

α
− 3.

We now compute the bound on the corners. We have

p(1, y, z) = y + z + y2 − (6− α)yz + z2 + y2z + yz2.

Observe that y2 − (6− α)yz + z2 + (y + z)2 = 2(y − z)2 + αyz is positive when y
and z are positive and thus

p(1, y, z) ≥ y + z − (y + z)2 = (y + z)(1− (y + z)).

Hence we can take s = (1 − r)3 ∗ (1 − r) = (1 − r)4. We have M = 6 − α and
v = 6. The second bound is therefore

6(6− α)

(1− r)4 − 3
>

36

(1− r)4
− 3.
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Putting this together, if r is chosen so that r − 3r2 > α
27

, then for

N > max

{
81

α
− 3,

36

(1− r)4

}
,

FN ∗ p has positive coefficients. Since α < 1, we have r ≤ 1
18

and so the second
bound can be replaced by 45.3. In particular, it is bounded as α → 0 and we have
that N is asymptotically 81

α
.

Finally, we compute N directly. We claim that for N ≥ 18
α
− 3, (x + y + z)Npα

has non-negative coefficients and that this bound is sharp when α = 6w−1 for
some integer w.

For a + b + c = N + 3, the coefficient of N !
a!b!c!

xaybzc in (x + y + z)Npα is easily
seen to be fg − 3h − 2g − (6 − α)f, where f = a + b + c, g = ab + ac + bc, and
h = abc. But this equals

(f − 2)g − (9− α)h = (N + 1)g − (9− α)h = h
(
(N + 1)

g

h
− (9− α)

)
.

Now, g/h = 1/a+1/b+1/c, and it’s easy to show that if a, b, c ≥ 0 and a+b+c =
N +3, then the minimum occurs when a = b = c = N+3

3
. That is, g/h ≥ 9/(N +3)

and equality holds if 3 divides N . We have

9(N + 1)

N + 3
− (9− α) = α− 18

N + 3
,

and thus if N ≥ 18
α
− 3, all coefficients are non-negative. If 18

α
− 3 is a multiple of

3, i.e., if w = 6
α
− 1 is an integer, then for N = 3w − 3 the coefficient of xwywzw

will be 0, hence in this case N is best possible.
As α → 0, the bound from the theorem will be 81

α
−3 which has the same order

of growth as the true bound 18
α
− 3.

Remark 3. The technique used for forms with zeros at the corners should extend
to forms in Po(n, d) with zeros on the boundary and yield a quantitative Pólya’s
Theorem in this case. Also, using Schweighofer’s construction, this should have
applications to representations of polynomials nonnegative on compact sets and
to optimization. These topics will be the subject of future work.
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[5] W. Habicht, Über die Zerlegung strikte definter Formen in Quadrate, Com-
ment Math. Helv. 12 (1940), 317-322.

[6] D. Handelman, Deciding eventual positivity of polynomials, Ergod. Th. &
Dynam. Sys. 6 (1986), 57-79.

[7] D. Handelman, Representing polynomials by positive linear functions on com-
pact convex polyhedra, Pac. J. Math. 132 (1988), 35–62.

[8] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Camb.
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