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Abstract. Hilbert proved in 1888 that a positive semidefinite (psd) real form is a
sum of squares (sos) of real forms if and only if n = 2 or d = 1 or (n, 2d) = (3, 4),
where n is the number of variables and 2d the degree of the form. We study the
analogue for even symmetric forms. We establish that an even symmetric n-ary
2d-ic psd form is sos if and only if n = 2 or d = 1 or (n, 2d) = (n, 4)n≥3 or
(n, 2d) = (3, 8).

1. Introduction

A real form (homogeneous polynomial) f is called positive semidefinite (psd)
if it takes only non-negative values and it is called a sum of squares (sos) if there
exist other forms h j so that f = h2

1 + · · ·+ h2
k . Let Pn,2d and Σn,2d denote the cone of

psd and sos n-ary 2d-ic forms (i.e. forms of degree 2d in n variables) respectively.
In 1888, Hilbert [9] gave a celebrated theorem that characterizes the pairs (n, 2d)

for which every n-ary 2d-ic psd form can be written as a sos of forms. It states that
every n-ary 2d-ic psd form is sos if and only if n = 2 or d = 1 or (n, 2d) = (3, 4).
Hilbert demonstrated that Σn,2d ( Pn,2d for (n, 2d) = (4, 4), (3, 6), thus reducing the
problem to these two basic cases.

Almost ninety years later, Choi and Lam [1] returned to this subject. In par-
ticular, they considered the question of when a symmetric psd form is sos. A
form f (x1, . . . , xn) is called symmetric if f (xσ(1), . . . , xσ(n)) = f (x1, . . . , xn) for all
σ ∈ S n. As an analogue of Hilbert’s approach, they reduced the problem to finding
symmetric psd not sos n-ary 2d-ics for the pairs (n, 4)n≥4 and (3, 6). They asserted
the existence of psd not sos symmetric quartics in n ≥ 5 variables; contingent
on these examples, the answer is the same as that found by Hilbert. In [6], we
constructed these quartic forms.

A form is even symmetric if it is symmetric and in each of its terms every vari-
able has even degree. Let SPe

n,2d and S Σe
n,2d denote the set of even symmetric psd

and even symmetric sos n-ary 2d-ic forms respectively. Set ∆n,2d := SPe
n,2d\S Σe

n,2d.
In this paper, we investigate the following question:

Q(S e) : For what pairs (n, 2d) is ∆n,2d = ∅ ?

The current answers to this question in the literature are ∆n,2d = ∅ if n = 2, d =

1, (n, 2d) = (3, 4) by Hilbert’s Theorem, (n, 2d) = (3, 8) due to Harris [7], and
(n, 2d) = (n, 4)n≥4. The result ∆n,4 = ∅ for n ≥ 4 was attributed to Choi, Lam and
Reznick in [7]; a proof can be found in [5, Proposition 4.1]. Further, ∆n,2d , ∅ for
(n, 2d) = (n, 6)n≥3 due to Choi, Lam and Reznick [3], for (n, 2d) = (3, 10), (4, 8)
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due to Harris [8] and for (n, 2d) = (3, 6) due to Robinson [10]. Robinson’s even
symmetric psd not sos ternary sextic is the form

R(x, y, z) := x6 + y6 + z6 − (x4y2 + y4z2 + z4x2 + x2y4 + y2z4 + z2x4) + 3x2y2z2.

Thus the answer to Q(S e) in the literature can be summarized by the following
chart:

deg \ var 2 3 4 5 . . .

2 X X X X . . .

4 X X X X . . .

6 X × × × . . .

8 X X × o o
10 X × o o o
12 X o o o o
14 X o o o o
...

... o o o o

where, a tick (X) denotes a positive answer to Q(S e), a cross (×) denotes a negative
answer toQ(S e), and a circle (o) denotes “undetermined”. Indeed to get a complete
answer to Q(S e), we need to investigate the question in these remaining cases,
namely (n, 8) for n ≥ 5, (3, 2d) for d ≥ 6 and (n, 2d) for n ≥ 4, d ≥ 5.
Main Theorem. An even symmetric n-ary 2d-ic psd form is sos if and only if
n = 2 or d = 1 or (n, 2d) = (n, 4)n≥3 or (n, 2d) = (3, 8).

In other words, every “o” in the chart can be replaced by “×”.
The article is structured as follows. In Section 2, we develop the tools (Theorem

2.3 and Theorem 2.4) we need to prove our Main Theorem. These tools allow us to
reduce to certain basic cases, in the same spirit as Hilbert and Choi-Lam. In Section
3 and Section 4 we resolve those basic cases by producing explicit examples for
(n, 2d); n ≥ 4, d = 4, 5, 6. We conclude Section 4 by interpreting even symmetric
psd forms in terms of preorderings using our Main Theorem. Finally, for ease of
reference we summarize our examples in Section 5.

2. Reduction to basic cases

The following Lemma will be used in Theorem 2.3.

Lemma 2.1. For n ≥ 3, the even symmetric real forms

pn(x1, . . . , xn) = 4
n∑

j=1

x4
j − 17

∑
1≤i< j≤n

x2
i x2

j ;

qn(x1, . . . , xn) =

n∑
j=1

x6
j + 3

∑
1≤i, j≤n

x4
i x2

j − 100
∑

1≤i< j<k≤n

x2
i x2

j x
2
k

are irreducible over R.

Proof. First observe that if a form g has a factorization

g(x1, . . . , xn) =

u∏
r=1

fr(x1, . . . , xn),
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then the same holds when xk+1 = · · · = xn = 0, hence it suffices to show that p3
and q3 are irreducible over R. Second, observe that if (in addition) g is even and
symmetric, then for all σ ∈ S n and choices of sign, fr(±1xσ1 , . . . ,±nxσn) is also a
factor of g. We call distinct (non-proportional) forms of this kind cousins of fr. If
(in addition) fr is irreducible, deg fr = d and deg g = n, then fr can have at most
n/d cousins.

If p3 is reducible, then it has a factor of degree ≤ 2. Suppose that p3 has a linear
factor α1x1 + α2x2 + α3x3. Upon setting x3 = 0, we see that

α1x1 + α2x2 | 4x4
1 − 17x2

1x2
2 + 4x4

2 = (x1 + 2x2)(x1 − 2x2)(2x1 + x2)(2x1 − x2),

so α2/α1 ∈ {±1/2,±2}. Similarly, α3/α2 ∈ {±1/2,±2}, so α3/α1 ∈ {±1/4,±1,±4},
which contradicts α3/α1 ∈ {±1/2,±2}. It follows that p3 has no linear factors.

Suppose p3 has a quadratic (irreducible) factor f = α1x2
1 +α2x2

2 +α3x2
3 + . . . . If

it is not true that α1 = α2 = α3, then by permuting variables, f has at least 3 > 4/2
cousins. Thus α1 = α2 = α3, and by scaling we may assume the common value
is 2. The binary quartic 4x4

1 − 17x2
1x2

2 + 4x4
2 has six quadratic factors, found by

taking pairs of linear factors as above. Of these, the ones in which α1 = α2 are
2x2

1 ± 5x1x2 + 2x2
2. It follows that, more generally, the coefficient of xix j is ±5 and

that

f (x1, x2, x3) = 2x2
1 + 2x2

2 + 2x2
3 + ±12(5x1x2) + ±13(5x1x3) + ±23(5x2x3).

Regardless of the initial choice of signs, making the single sign changes xi 7→ −xi
for i = 1, 2, 3 shows that f has 4 cousins, which again is too many. Therefore, we
may conclude that p3 is irreducible.

We turn to q3 and first observe that

q3(x1, x2, x3) = (x2
1 + x2

2 + x2
3)3 − 106x2

1x2
2x2

3.

Suppose now that q3 is reducible, so it has at least one factor of degree ≤ 3, and let
f be such a factor of q3. Once again, we set x3 = 0 and observe that

f (x1, x2, 0) | q3(x1, x2, 0) = (x2
1 + x2

2)3.

Since x2
1 + x2

2 is irreducible over R, we conclude that deg f = 2 and f (x1, x2) =

λ(x2
1 + x2

2). Writing

f (x1, x2, x3) = α1x2
1 + α2x2

2 + α3x2
3 +

∑
1≤i< j≤3

βi jxix j,

we see from the foregoing that α1 = α2 and β12 = 0. By setting x2 = 0 and x1 = 0
in turn, we see that the αi’s are equal and βi j = 0, so f is a multiple of x2

1 + x2
2 + x2

3.
But since x2

1x2
2x2

3 is not a multiple of x2
1 + x2

2 + x2
3, f cannot divide q3, completing

the proof. �

Lemma 2.2. Let f be a psd not sos n-ary 2d-ic form and p an irreducible indefinite
form of degree r in R[x1, . . . , xn]. Then the n-ary (2d + 2r)-ic form p2 f is also psd
not sos.

Proof. See [6, Lemma 2.1]. �

Theorem 2.3. (Degree Jumping Principle) Suppose f ∈ ∆n,2d for n ≥ 3, then
1. for any integer r ≥ 2, the form f p2a

n q2b
n ∈ ∆n,2d+4r, where r = 2a+3b; a, b ∈ Z+,

and pn, qn are as defined in Lemma 2.1;
2. (x1 . . . xn)2 f ∈ ∆n,2d+2n.
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Proof. 1. For r ∈ Z+, r ≥ 2, there exists non-negative a, b ∈ Z such that r = 2a+3b.
Since f p2a

n q2b
n is a product of even symmetric forms, it is even and symmetric;

since it is a product of psd forms, it is psd. Thus we have f p2a
n q2b

n ∈ SPe
n,2d+4r.

Since pn and qn are indefinite and irreducible forms by Lemma 2.1, we get
f p2

n ∈ ∆n,2d+8 and f q2
n ∈ ∆n,2d+12 by Lemma 2.2. Finally, by repeating this

argument we get f p2a
n q2b

n ∈ ∆n,2d+4r.
2. Taking p = xi in turn for each 1 ≤ i ≤ n, the assertion follows by Lemma 2.2.

�

Theorem 2.4. (Reduction to Basic Cases) If ∆n,2d , ∅ for (n, 8)n≥4, (n, 10)n≥3 and
(n, 12)n≥3, then ∆n,2d , ∅ for (n, 2d)n≥3,d≥7.

Proof. For n = 3, the basic examples are R(x, y, z) ∈ ∆3,6 (by Robinson [10]),
several examples in ∆3,10 (by Harris [7]) and p2

3R(x, y, z) ∈ ∆3,14 (by Theorem 2.3
(1)). Every even integer ≥ 12 can be written as 6 + 6k, 10 + 6k or 14 + 6k, k ≥ 0,
and so by Theorem 2.3 (2), ∆3,2d is non-empty for 2d ≥ 6, 2d , 8.

For n ≥ 4, ∆n,6 , ∅ (by Choi, Lam, Reznick [3]). We shall show in Sections 3
and 4 that ∆n,8,∆n,10,∆n,12 are non-empty. Every even integer ≥ 14 can be written
as 6+8k, 8+8k, 10+8k or 12+8k and so, given our claimed examples, by Theorem
2.3, ∆n,2d is non-empty for n ≥ 4, 2d ≥ 6. �

In order to find psd not sos even symmetric n-ary octics, psd not sos even sym-
metric n-ary decics and psd not sos even symmetric n-ary dodecics for n ≥ 4, we
first recall the following theorems which will be particularly useful in proving the
main results of Sections 3 and 4.

Theorem 2.5. Suppose p =

r∑
i=1

h2
i is an even sos form. Then we may write p =

s∑
j=1

q2
j , where each form q2

j is even. In particular, q j(x) =
∑

c j(α)xα, where the

sum is taken over α’s in one congruence class mod 2 component-wise.

Proof. See [3, Theorem 4.1]. �

Theorem 2.6. A symmetric n-ary quartic f is psd if and only if f (x) ≥ 0 for every
x ∈ Rn with at most two distinct coordinates (if n ≥ 4).

Proof. This was originally proved in [2]; see [5, Corollary 3.11], [7, Section 2]. �

Theorem 2.7. (i) For odd 2m + 1 ≥ 5, the symmetric 2m + 1-ary quartic

L2m+1(x) := m(m + 1)
∑
i< j

(xi − x j)4 −

(∑
i< j

(xi − x j)2
)2

is psd not sos.
(ii) For 2m ≥ 4, the symmetric 2m-ary quartic

C2m(x1, . . . , x2m) := L2m+1(x1, . . . , x2m, 0)

is psd not sos.

Proof. See [6, Theorems 2.8, 2.9]. �

Theorem 2.8. For an integer r ≥ 1, let Mr = Mr(x1, . . . , xn) := xr
1 + · · · + xr

n. For
reals a, b, c, the sextic p = aM3

2 +bM2M4 +cM6 is psd if and only if at2 +bt+c ≥ 0
for t ∈ {1, 2, . . . n} and sos if and only if at2 + bt + c ≥ 0 for t ∈ {1} ∪ [2, n].
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Proof. See [3, Theorems 3.7, 4.25]. �

Observation 2.9. Let vt denote any n-tuple with t components equal to 1 and n− t
components equal to zero. Then Mr(vt) = t, so p(vt) = t(at2 + bt + c). It will be
useful in the proofs of Theorems 3.1, 4.1 and 4.4 to let vt(a1, . . . , at) denote the
particular vt with 1’s in positions a1, . . . , at.

3. Psd not sos even symmetric n-ary octics for n ≥ 4

It follows from Theorem 2.7 that for m ≥ 2,

G2m+1(x1, . . . , x2m+1) := L2m+1(x2
1, . . . , x

2
2m+1) ∈ SPe

2m+1,8;

D2m(x1, . . . , x2m) := G2m+1(x1, . . . , x2m, 0) ∈ SPe
2m,8.

We showed in [6] that G2m+1(x) = 0 for those x ∈ R2m+1 which are a permutation
of m + 1 r’s and m s’s for (r, s) ∈ R2, so that D2m(x) = 0, projectively, at any vm or
vm+1.

Theorem 3.1. For m ≥ 2, D2m ∈ ∆2m,8 and G2m+1 ∈ ∆2m+1,8.

Proof. We observe that D2m(v1) > 0; in fact, it is equal to m(m + 1)(2m) − (2m)2 =

2m2(m − 1). Thus, the coefficient of x8
i in D2m is positive. Suppose D2m =

∑
h2

t .
Then x4

i must appear with non-zero coefficient in at least one ht. Since we may
assume that h2

t is even (using Theorem 2.5), we must have

ht =

n∑
i=1

aix4
i +

∑
1≤i< j≤n

bi, jx2
i x2

j .

Since D2m(vm) = D2m(vm+1) = 0, it follows that ht(vm) = ht(vm+1) = 0, and
this holds for all permutations of vm and vm+1. Our goal is to show that these
equations imply that ht = 0, which will contradict the assumption that D2m is sos.
By symmetry, it suffices to prove that ai = 0 for one choice of i.

To this end, let y(1) = vm(1, . . . ,m − 1, 2m − 1), y(2) = vm(1, . . . ,m − 1, 2m) and
y(3) = vm+1(1, . . . ,m − 1, 2m − 1, 2m). Then

0 = ht(y(1)) =

m−1∑
i=1

ai + a2m−1 +
∑

1≤i< j≤m−1

bi, j +

m−1∑
i=1

bi,2m−1;

0 = ht(y(2)) =

m−1∑
i=1

ai + a2m +
∑

1≤i< j≤m−1

bi, j +

m−1∑
i=1

bi,2m;

0 = ht(y(3)) =

m−1∑
i=1

ai + a2m−1 + a2m +
∑

1≤i< j≤m−1

bi, j +

m−1∑
i=1

bi,2m−1 +

m−1∑
i=1

bi,2m + b2m−1,2m.

Taking the first equation plus the second minus the third yields
m−1∑
i=1

ai +
∑

1≤i< j≤m−1

bi, j = b2m−1,2m.

Since m ≥ 2, m − 1 < 2m − 2; thus, the same argument implies that
m−1∑
i=1

ai +
∑

1≤i< j≤m−1

bi, j = b2m−2,2m.
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That is, the coefficient of x2
2m−1x2

2m in ht equals the coefficient of x2
2m−2x2

2m, and so
by symmetry, for all distinct i, j, k, `, the coefficient of x2

i x2
j equals the coefficient

of x2
i x2

k , which equals the coefficient of x2
k x2

` . Thus, for all i , j, bi, j = u for some
u.

Subtracting the first from the second equation gives now a2m−1 = a2m, and so
for all i, ai = v for some v. Finally, our previous equations imply that

0 = mv +

(
m
2

)
u = (m + 1)v +

(
m + 1

2

)
u = 0

=⇒ −v =
m − 1

2
· u =

m
2
· u =⇒ u = 0 =⇒ v = 0.

In other words, ht = 0, establishing the contradiction.
Suppose now that G2m+1 were sos. Then

G2m+1 =

r∑
t=1

h2
t =⇒ D2m =

r∑
t=1

h2
t (x1, . . . , x2m, 0),

a contradiction. Thus G2m+1 is not sos. �

Remark 3.2. It was asserted in [3] that the psd even symmetric n-ary octic

M2
(
M3

2 − (2k + 1)M2M4 + k(k + 1)M6
)

is not sos, provided 2 ≤ k ≤ n − 2. We prove this below for k = 2 and n ≥ 4.

Theorem 3.3. For n ≥ 4,

Tn(x1, . . . , xn) = M2
(
M3

2 − 5M2M4 + 6M6
)
∈ ∆n,8.

Proof. Note that Tn is psd by Theorem 2.8. Suppose

Tn(x1, . . . , xn) =

m∑
r=1

h2
r (x1, . . . , xn).

Then, Tn(v2) = Tn(v3) = 0 but Tn(v1) > 0. In particular, the terms x4
j must appear

on the right hand side. As in the proof of Theorem 3.1, these terms must appear in
n∑

k=1

akx4
k +

∑
1≤ j<k≤n

b jkx2
j x

2
k ,

which must vanish at every v2 and every v3. In particular, for i < j < k, we have
ai + a j + bi j = 0,
ai + ak + bik = 0,
a j + ak + b jk = 0,

ai + a j + ak + bi j + bik + b jk = 0.

It easily follows that ai + a j + ak = 0. Now assume i, j, k are distinct, but not nec-
essarily increasing. Since n ≥ 4, there is an unused index ` and we may conclude
that ai + a j + a` = 0. Hence ak = a`. Since these are arbitrary, we conclude that
am is independent of m, and since ai + a j + ak = 0, it follows that each am = 0, a
contradiction. �

Remark 3.4. For n = 3, M2(M3
2 − 5M2M4 + 6M6) = 2M2R is sos, see [10], or

equation (7.4) in [3].
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4. Psd not sos even symmetric n-ary decics and dodecics for n ≥ 4

Theorem 4.1. For n ≥ 4,

Pn(x1, . . . , xn) = (nM4 − M2
2)(M3

2 − 5M2M4 + 6M6) ∈ ∆n,10.

Proof. First recall that

nM4 − M2
2 = n

n∑
k=1

x4
k −

 n∑
k=1

x2
k

2

=
∑
i< j

(x2
i − x2

j )
2

is psd by Cauchy-Schwarz. The zero set is (±1, . . . ,±1).
Second, recall from Theorem 2.8 that the quadratic t(at2 +bt +c) gives the value

of the sextic aM3
2 + bM2M4 + cM6 at an n-tuple vt with t 1’s and n − t 0’s. Since

t(t − 2)(t − 3) ≥ 0, this criterion is satisfied, and the second factor is also psd with
zeros at v2 and v3.

It follows that Pn is psd and its coefficient of x10
1 is (n − 1)(1 − 5 + 6) > 0. We

show that Pn is not sos by showing that in any sos expression, x10
1 cannot occur.

Using Theorem 2.5, we see that if Pn =
∑

h2
r and x5

1 occurs in hr, then

hr = ax5
1 + x3

1

 n∑
k=2

bkx2
k

 + x1

 n∑
k=2

ckx4
k

 + x1

 ∑
2≤ j<k<n

d jkx2
j x

2
k

 .
Since Pn(v2(1, j)) = Pn(v3(1, j, k)) = 0 for all j, k, 2 ≤ j < k ≤ n, it follows that
0 = hr(v2(1, j)) = hr(v3(1, j, k)) = 0, and we have the equations

0 = a + b j + c j,

0 = a + b j + bk + c j + ck + d jk = (a + b j + c j) + (a + bk + ck) + d jk − a.

From these equations, we may conclude that for all 2 ≤ j < k ≤ n,

bk + ck = −a, d jk = a.

Finally, Pn(vn) = 0, so hr(vn) = 0; that is,

0 = a +

n∑
k=2

(bk + ck) +
∑

2≤ j<k<n

d jk = a
(
1 − (n − 1) +

(
n − 1

2

))
= a ·

(n − 2)(n − 3)
2

.

Thus, a = 0 and x5
1 occurs in no hr. This gives the contradiction. �

Remark 4.2. When n = 3, Pn is sos:
P3 = (3M4 − M2

2)(M3
2 − 5M2M4 + 6M6)

= 4(x4 + y4 + z4 − x2y2 − x2z2 − y2z2)R(x, y, z)
= 4(x2(x2 − y2)2(x2 − z2)2 + y2(y2 − x2)2(y2 − z2)2 + z2(z2 − x2)2(z2 − y2)2).

Remark 4.3. We have also shown that for m ≥ 2, M2G2m+1 ∈ ∆2m+1,10. We shall
discuss M2G2m+1 and M2D2m in a future publication.

Theorem 4.4. For n ≥ 5,

Qn(x1, . . . , xn) = (M3
2 − 5M2M4 + 6M6)(M3

2 − 7M2M4 + 12M6) ∈ ∆n,12.

Proof. Since (t − 2)(t − 3) ≥ 0 and (t − 3)(t − 4) ≥ 0, both factors in Qn are psd
by Theorem 2.8. The first has zeros at every v2 and v3 and the second has zeros at
every v3 and v4. But note that neither has a zero at v1. In fact, the coefficient of x6

1
in Qn is (1 − 5 + 6)(1 − 7 + 12) > 0.
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Suppose Qn is sos and Qn =
∑

f 2
k . As before, assume the f 2

k ’s are even (using
Theorem 2.5). Then fk(vt) = 0 for every vt with t = 2, 3, 4. Since Qn(v1) > 0, there
must be an fk containing x6

i , which will be itself even. To this end, suppose

fk =

n∑
i=1

αix6
i +

∑
1≤i, j≤n

βi jx4
i x2

j +
∑

1≤i< j<k≤n

γi jkx2
i x2

j x
2
k .

For i < j, let µi j = βi j + β ji. By evaluating at v2(i, j), we see that

0 = αi + α j + βi j + β ji = αi + α j + µi j =⇒ µi j = −αi − α j.

By evaluating at v3(i, j, k), we have

0 = αi + α j + αk + µi j + µik + µ jk + γi jk =

(αi + α j + αk) − 2(αi + α j + αk) + γi jk =⇒ γi jk = (αi + α j + αk).

Finally, by evaluating at v4(i, j, k, `), we have

0 = αi + α j + αk + α` + µi j + µik + µ jk + µi` + µ j` + µk` + γi jk + γi j` + γik` + γ jk`

= (αi + α j + αk + α`)(1 − 3 + 3) =⇒ αi + α j + αk + α` = 0.

In other words, the sum of any four distinct αr’s is 0. Since n ≥ 5, there exists m ∈
{1, . . . , n} different from i, j, k, ` and we have αi +α j +αk +αm = 0. Thus α` = αm,
and since the choice of ` and m was arbitrary, we conclude that α1 = · · · = αn = α,
so that 4α = 0 and thus the coefficient of x6

i in fk must be zero, a contradiction. �

Remark 4.5. We have been unable to determine whether Q3 and Q4 are sos.

Theorem 4.6. For n ≥ 3,

Rn(x1, . . . , xn) =
1
12
· (M3

2 − 3M2M4 + 2M6)(M3
2 − 5M2M4 + 6M6)

=

 ∑
1≤i< j<k≤n

x2
i x2

j x
2
k


 n∑

i=1

x6
i −

∑
1≤i, j≤n

x4
i x2

j + 3
∑

1≤i< j<k≤n

x2
i x2

j x
2
k

 ∈ ∆n,12.

Proof. Since (t − 1)(t − 2) ≥ 0 and (t − 2)(t − 3) ≥ 0, both factors in Rn are psd by
Theorem 2.8. Moreover, the first factor implies that

(4.1) Rn(t, u, 0, . . . , 0) = 0

for all real t, u, and at all n-tuples which are permutations of (t, u, 0, . . . , 0). We also
have, for all t,

(4.2) Rn(t, 1, 1, 0, . . . , 0) = t2 · 12 ·((2+t2)3−5(2+t2)(2+t4)+6(2+t6)) = t4(t2−1)2;

this also holds by symmetry at any permutation of n − 3 0’s, two 1’s and one t.
We first remark that if n = 3, Rn(x, y, z) = x2y2z2R(x, y, z); since R is not sos, the

same holds for R multiplied by a product of squared linear factors. For n ≥ 4, more
work is necessary.

Suppose Rn =
∑

r h2
r , so that deg hr = 6. Suppose as usual that each h2

r is
even (using Theorem 2.5). It follows from equation (4.1) that for any such hr,
hr(t, u, 0, . . . , 0) = 0, for all (t, u). If, say, the terms in hr involving only x6−k

1 xk
2

are
∑6

k=0 akx6−k
1 xk

2, then
∑

akt6−kuk = 0 for all t, u, which implies that ak = 0.
Proceeding similarly for all pairs of variables, we see that no monomial involving
one or two variables can appear in any hr.
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For equation (4.2), let φr(t) = hr(t, 1, 1, 0, . . . , 0). We have
w∑

r=1

φr(t)2 = t4(t2 − 1)2.

Evaluation at t = 0, 1,−1 shows that φr(t) = t(t2 − 1)ψr(t), so that
w∑

r=1

ψr(t)2 = t2,

which in turn implies that ψr(t) = λrt for some real λr. To recapitulate, we have

(4.3) hr(t, 1, 1, 0, . . . , 0) = λrt2(t2 − 1),

and similar equations hold for all permutations of the variables.
Since x2

1x2
2x8

3 appears in rn with coefficient 1, it also appears in
∑

h2
r with coef-

ficient 1. Since no monomial occurs in any hr with only two variables, it follows
that x1x2x4

3 must appear in at least one hr, and since h2
r is even, all terms in hr

must be x1x2 times an even quartic monomial. Further, we already know that
x5

1x2, x3
1x3

2, x1x5
2 do not occur. Thus

hr(x1, . . . , xn) = x1x2

 n∑
j=3

(a jx2
1x2

j + b jx2
2x2

j + c jx4
j ) +

∑
3≤ j<k≤n

d jkx2
j x

2
k

 .
Thus,

hr(t, 1, 1, 0, . . . , 0) = t(a3t2 + b3 + c3),

hr(1, t, 1, 0, . . . , 0) = t(a3 + b3t2 + c3).
In view of equation (4.3), both of these cubics must be identically zero, hence
a3 = b3 + c3 = b3 = a3 + c3 = 0, and so, in particular, c3 = 0. This means that
x1x2x4

3 does not appear in any hr, establishing the contradiction. �

Proof of the Main Theorem.
Combine Theorems 2.4, 3.1, 4.1, 4.4 and 4.6. �

We now present an application of the Main Theorem to the interpretation of
even symmetric psd forms in terms of preorderings. We briefly recall the necessary
background. Let S = {g1, . . . , gs} ⊆ R[x], and let

TS :=

 ∑
e1,...,es∈{0,1}

σe ge1
1 . . . ges

s | σe ∈ ΣR[x]2, e = (e1, . . . , es)


be the associated finitely generated quadratic preordering, and

KS := {x ∈ R[x] | g1(x) ≥ 0, . . . , gs(x) ≥ 0}

be the associated basic closed semi-algebraic set.
We recall the following result which follows from [11, Proposition 6.1]:

Proposition 4.7. Let S be a finite subset of R[x], such that dim(KS ) ≥ 3. Then
there exists a g ∈ R[x] s.t. g ≥ 0 on KS but g < TS .

In the concluding Remark 4.9, we investigate when can the form g of Proposition
4.7 be chosen to be symmetric. We set S ′ := {x1, . . . , xn} and KS ′ = Rn

+ (the
positive orthant). We need the following relation between the preordering TS ′ and
even sos forms, as verified in [4, Lemma 1]:
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Lemma 4.8. Let g ∈ R[x]. Then g(x2
1, . . . , x

2
n) is sos if and only if g ∈ TS ′ .

Remark 4.9. Let f be an even symmetric n-ary form of degree 2d, and g be the n-
ary symmetric form of degree d such that g(x2

1, . . . , x
2
n) = f (x1, . . . , xn). Clearly, f

is psd if and only if g is nonnegative on Rn
+. Moreover, by Lemma 4.8, f ∈ ΣR[x]2

if and only if g ∈ TS ′ . Applying our Main Theorem, we get that for n ≥ 3, d ≥ 3
and (n, 2d) , (3, 8), there exists a symmetric n-ary d-ic form g such that g ≥ 0 on
Rn

+ but g < TS ′ .

5. A glossary of forms

For easy reference, we list the examples discussed in this paper.

L2m+1(x1, . . . , x2m+1) := m(m + 1)
∑
i< j

(xi − x j)4 −

(∑
i< j

(xi − x j)2
)2
, (Theorem 2.7);

C2m(x1, . . . , x2m) = L2m+1(x1, . . . , x2m, 0), (Theorem 2.7);

Mr(x1, . . . , xn) = xr
1 + · · · + xr

n, (Theorem 2.8);

G2m+1(x1, . . . , x2m+1) = L2m+1(x2
1, . . . , x

2
2m+1), (Section 3);

D2m(x1, . . . , x2m) = G2m+1(x1, . . . , x2m, 0), (Section 3);

Tn(x1, . . . , xn) = M2
(
M3

2 − 5M2M4 + 6M6
)
, (Theorem 3.3);

Pn(x1, . . . , xn) = (nM4 − M2
2)(M3

2 − 5M2M4 + 6M6), (Theorem 4.1);

Qn(x1, . . . , xn) = (M3
2 − 5M2M4 + 6M6)(M3

2 − 7M2M4 + 12M6), (Theorem 4.4);

Rn(x1, . . . , xn) =
1

12
· (M3

2 − 3M2M4 + 2M6)(M3
2 − 5M2M4 + 6M6), (Theorem 4.6).
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