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Let Hm(Cn) denote the vector space of complex forms in n
variables with degree m. How can a form of degree m = de be
written as a sum of d-th powers of forms of degree e? More
specifically, given p ∈ Hm(Cn), what is the smallest number N so
that there exist forms fj ∈ He(Cn) satisfying

p =
N∑
j=1

f d
j ?

When e = 1, this number N is the Waring rank of p.
For the most part, this talk is concerned with e = 2, n = 2, but it
will be helpful to review the case e = 1, n = 2; that is, when the
fj ’s are binary linear forms.
We begin with an auto-plagiaristic look at Sylvester’s algorithm,
limited to representations over C in this talk. Apologies to
everyone who has seen the next few pages before.
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Theorem (Sylvester, 1851)

Suppose p(x , y) =
∑d

j=0

(d
j

)
ajx

d−jy j ∈ C[x , y ] and h(x , y) =∑r
t=0 ctx

r−ty t =
∏r

j=1(βjx − αjy) is a product of pairwise
non-proportional linear factors, where αj , βj ∈ C. Then there exist
λk ∈ C so that

p(x , y) =
r∑

k=1

λk(αkx + βky)d

if and only if


a0 a1 · · · ar
a1 a2 · · · ar+1
...

...
. . .

...
ad−r ad−r+1 · · · ad

 ·


c0
c1
...

cr

 =


0
0
...
0

 .
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Some notes on the proof:

This is equivalent to apolarity. Since (β ∂
∂x − αj

∂
∂y ) kills

(αx + βy)d , if h(D) is defined to be
∏r

j=1(βj
∂
∂x −αj

∂
∂y ), then

h(D)p =
d−r∑
v=0

d!

(d − r − v)!v !

(
d−r∑
i=0

ai+vci

)
xd−r−vy v

The coefficients of h(D)p are, up to multiple, the rows in the
matrix product, so the matrix condition is h(D)p = 0. Each
linear factor in h(D) kills a different summand.

This is also an algorithm! Given p, for increasing r , look for
null vectors c corresponding to apolar forms with distinct
roots. In effect, look for the small linear recurrences satisfied
by the a′js.

If h has repeated factors, see Gundelfinger’s Theorem (1886):
(βx − αy)` gives a summand (αx + βy)d−(`−1)q(x , y), where
q is an arbitrary form of degree `− 1.
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Here is a (reverse-engineered) example of Sylvester’s Theorem in
action. Let

p(x , y) = x3 + 12x2y − 6xy2 + 10y3 =(
3

0

)
· 1 x3 +

(
3

1

)
· 4 x2y +

(
3

2

)
· (−2)xy2 +

(
3

3

)
· 10 y3

We have (
1 4 −2
4 −2 10

)

·

 2
−1
−1

 =

(
0
0

)
and 2x2 − xy − y2 = (2x + y)(x − y), so that

p(x , y) = λ1(x − 2y)3 + λ2(x + y)3.

In fact, p(x , y) = −(x − 2y)3 + 2(x + y)3.
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The next simple example is p(x , y) = 3x2y . Note that

(
0 1 0
1 0 0

)
·

c0
c1
c2

 =

(
0
0

)
=⇒ c0 = c1 = 0

so that h(x , y) = c2y2 has repeated factors, and p is not a sum of
two cubes. Similarly, xd−1y requires d d-th powers.

It can be shown more generally that the Waring rank of p is less
than its degree, unless p = `d−11 `12 for different linear `i ’s.
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If d = 2s − 1 and r = s, then the matrix in Sylvester’s Theorem is
s × (s + 1) and has a non-trivial null-vector. The corresponding h
has distinct factors unless its discriminant vanishes. If d = 2s and
r = s, then the matrix is square, and for a fixed linear form `, there
generally exists λ ∈ C so that p(x , y)− λ`2s has a non-trivial
null-vector, generally corresponding to h with distinct factors.

Theorem (Sylvester’s Theorem, canonical form version)

(i) A general binary form p of odd degree 2s − 1 can be written as

p(x , y) =
s∑

j=1

(αjx + βjy)2s−1.

(ii) Given any fixed linear form `, a general binary form p of even
degree 2s can be written as

p(x , y) = λ`2s(x , y) +
s∑

j=1

(αjx + βjy)2s .
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The following result is from my 2013 paper on canonical forms in
Pac. J. Math. The basis of the numerology below is simply
constant-counting.

Theorem

A general binary form of degree de can be written as a sum of
dde+1

e+1 e d-th powers of binary forms of degree e. (That is, if
possible at all, a general binary form is a sum of at most d d-th
powers of forms.)
In fact, if de + 1 = N(e + 1) + k, 1 ≤ k ≤ e + 1, then one can
take N binary forms of degree e and specify one’s favorite k
monomials in the (N + 1)-st.

Roughly speaking, the appeal to constant-counting, when
combined with these theorems, shows that “most” forms of degree
2d are a sum of roughly 2

3d d-th powers of quadratic forms.
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Corollary

(i) A general binary form of degree d = 6s can be written as

(λx2)3s +
2s∑
j=1

(αjx
2 + βjxy + γjy

2)3s

(ii) A general binary form of degree d = 6s + 2 can be written as

2s+1∑
j=1

(αjx
2 + βjxy + γjy

2)3s+1.

(iii) A general binary form of degree d = 6s + 4 can be written as

(λ1x2 + λ2y2)3s+2 +
2s+1∑
j=1

(αjx
2 + βjxy + γjy

2)3s+2
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Why is this a harder question than the Waring rank? For one
thing, if {`1, ..., `n} are n pairwise non-proportional binary linear
forms, then {`d1 , ...`dn} is linearly independent if and only if
n ≤ d + 1. There are no non-trivial linear dependencies among
powers of binary forms. On the other hand, we have the familiar

(x2 + y2)2 = (x2 − y2)2 + (2xy)2.

Furthermore, there doesn’t seem to be an apolarity argument.
Even a single quadratic form to the d-th power, say (xy)d , is not
apolar to any form of degree smaller than d + 1. I can’t find an
obvious form of degree ≤ 2d which is apolar to the sum of two
d-th powers of quadratic forms. Suggestions are welcome.
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Another indication of the difficulty lies in the existence of Hilbert
Identities, which is another talk altogether. For purposes of this
talk, I will note the following crypto-19th century result:

Theorem

The representations of (x2 + y2)t as a sum of t + 1 2t-th powers
are given by (

2t

t

)
(x2 + y2)t

=
22t

t + 1

t∑
j=0

(
cos( jπ

t+1 + θ)x + sin( jπ
t+1 + θ)y

)2t
,

θ ∈ C.

This expression gives lots of non-trivial linear combinations of t-th
powers of quadratic forms. The earliest known version (for real θ)
is by Avner Friedman, from the 1950s. It must be older.
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A form of degree two is trivially the sum of the first powers of one
quadratic form.

Let p be a binary quartic form. Since
⌈
5
3

⌉
= 2, we hope to write a

general p as a sum of two squares of quadratic forms.
But this is easy, because of the identity

FG =

(
F + G

2

)2

+

(
F − G

2i

)2

.

Factor p as a product of linear forms (possibly with repeats):

p = `1`2`3`4 =

(
`1`2 + `3`4

2

)2

+

(
`1`2 − `3`4

2i

)2

.

By using F 2 + G 2 = (cos θF + sin θG )2 + (− sin θF + cos θG )2, we
can also arrange one of the coefficients to disappear, as in the
canonical form.
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We turn to the first non-trivial case, and a theorem. Observe that⌈
7
3

⌉
= 3, so a general binary sextic is a sum of three cubes of

quadratic forms. We shall show that every sextic is a sum of at
most three cubes; there are no exceptions, such as xd−1y for sums
of powers of linear forms. We also give an algorithm for finding
some of these representations.

It’s useful to consider the case of the sum of two cubes of linear
forms. The coefficients of

∑2
i=1(αix

2 + βixy + γiy
2)3 comprise

seven forms in six variables, and so satisfy a non-trivial polynomial
that’s hard to find. On the other hand, there are two simple
criteria on the sum itself.
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Theorem

Suppose p ∈ H6(C2). Then p to be sum of two cubes of
quadratics if and only if either (i) or (ii) hold:

(i) p = f1f2f3, where the fi ’s are linearly dependent but
non-proportional quadratic forms.
(ii) There either exists a linear change of variables so that
p(ax + by , cx + dy) = g(x2, y2), or p = `3g for some linear form
`, where g is a cubic which is a sum of two cubes (i.e., not `21`

1
2.)

The proof of the second relies on the ancient art of simultaneous
diagonalization: if q and r are two binary quadratic forms, then
either they share a common factor, or they can be simultaneously
diagonalized.
The proof of the first is part of a more general result about sums
of two cubes of forms, given below.
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Theorem

Suppose F ∈ C[x1, . . . , xn]. Then F is a sum of two cubes in
C[x1, . . . , xn] if and only if it is itself a cube, or has a factorization
F = G1G2G3, into non-proportional, but linearly dependent factors.

Proof.

First F = G 3 + H3 = (G + H)(G + ωH)(G + ω2H), where

ω = e
2πi
3 . If two of the factors G + ωjH are proportional, then so

are G and H, and hence F is a cube. In any case,
(G + H) + ω(G + ωH) + ω2(g + ω2H) = 0.

Conversely, if F has such a factorization, there exist 0 6= α, β ∈ C
so that F = G1G2(αG1 + βG2). It is easily checked that

3αβ(ω − ω2)F = (ω2αG1 − ωβG2)3 − (ωαG1 − ω2βG2)3.
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(From an ongoing project with Hal Schenck and Boris Shapiro.)

Theorem

There is an algorithm for writing every binary sextic in C[x , y ] as a
sum of three cubes of quadratic forms, The method can give
infinitely many different representations, except for some singular
cases.

Here is a sketch of the proof. Write the binary sextic as

p(x , y) =
6∑

k=0

(
6

k

)
akx6−kyk .

Given p 6= 0, we may always make an invertible change of variables
to ensure that p(0, 1)p(1, 0) 6= 0; hence, assume a0a6 6= 0.

By an observation of ad hoc, if

q(x , y) = x2 + 2a1
a0

x y +
5a0a2−4a21

a20
y2.

then the coefficients of x6, x5y , x4y2 in p and a0q3 agree.
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Thus there always exists a cubic c such that

p(x , y)− a0q(x , y)3 = y3c(x , y).

Usually, (p − a0q3)/y3 = c is a sum of 2 cubes of linear forms,
from which it follows that p is a sum of 3 cubes. This algorithm
can only fail if c has a square factor. The discriminant of c is a
non-zero polynomial in the ai ’s of degree 18, divided by a140 ,
assuming that Mathematica is reliable.
We now consider the remaining cases in which this first approach
fails. Such a failure will have the shape

p(x , y) = (ax2 + bxy + cy2)3 + y3(rx + sy)2(tx + uy)

where ru − st 6= 0, so that c(x , y) genuinely is not a sum of two
cubes.
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Let pT (x , y) = p(x ,Tx + y) and write

pT (x , y) =
6∑

k=0

(
6

k

)
ak(T )x6−kyk .

Here, ak is a polynomial in T of degree 6− k and a6(T ) = a6 6= 0.
There are at most 6 values of T which must be avoided to ensure
that a0(T ) 6= 0.

Repeating the same construction as above, the discriminant is a
polynomial of degree 72 in T with coefficients in {a, b, c , r , s, t, u}
and more than 72,000 terms. It turns out, tediously, that for every
non-trivial choice of (a, b, c , d , r , s, t, u), this discriminant gives a
non-zero polynomial in T . (Cased out, not trusting in “Solve”.)

Hence by avoiding finitely many values of T , the algorithm will
work successfully on pT to give it as a sum of three cubes. We
then reverse the invertible transformations and get an expression
for p itself.
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For example, suppose p(x , y) = x6 + x5y + x4y2 + x3y3 + x2y4

+xy5 + y6. Then

p(x , y)−
(

x2 +
1

3
xy +

2

9
y2

)3

=

7

729
y3(54x3 + 81x2y + 99xy2 + 103y3).

An application of Sylvester’s algorithm shows that

54x3 + 81x2y + 99xy2 + 103y3 =

m1(78x + (173−
√

20153)y)3 + m2(78x + (173 +
√

20153)y)3,

m1 =
20153 + 134

√
20153

354209128
, m2 =

20153− 134
√

20153

354209128

This gives a simple sextic p as a sum of three cubes in an ugly way.
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An alternative approach is to observe that for a sextic p, there is
usually a quadratic q so that p − q3 is even. (Look at the
coefficients of x5y , x3y3, xy5 and solve the equations for the
coefficients of q.) Then p − q3 is a cubic in {x2, y2} and so is
usually a sum of two cubes of even quadratic form.

We do not know how to completely characterize the sets of sums
of three cubes for a given p and what other symmetries those sets
might have.

Clearly these tools from Ècole de calcul ad hoc will not generalize
to higher degree. It is natural to ask about representations of
octics as sums of three fourth powers of quadratic forms. (I think
Boris has some results along those lines.) One would, in fact,
expect that there is a canonical number of different representations
and there would be some exceptional cases. For example, I think
that `41`

3
2`

1
3 is not a sum of three fourth powers unless the `j ’s are

the same. No proofs yet.
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I thank the organizers for the
invitation to speak and the audience
for its patience and attention.
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