Same description as before. This is the last homework to cover material for the first exam.

1. §2.1 - 14 (The easiest proof is by induction on \(n \).)
2. §2.1 - 20 c.
3. §2.2 - 2. (Recall that \((m + 2)! = (m + 2)(m + 1)m!\).)
4. §2.2 - 8, 10.
5. Determine the image of the region

\[A = \{(x, y) : x < 1 \text{ and } y < 1\} \]

under the map \(w = f(z) = 1/z \).

6. (E) Show that the function \(u(x, y) = y^3 - 3x^2y + 3x \) is harmonic, and calculate any harmonic conjugate \(v(x, y) \) by any correct method. Express \(f(z) = f(x + iy) := u(x, y) + i \cdot v(x, y) \) as a function of \(z \) alone.

7a. Find, carefully, all complex numbers \(z \) with the property that \(e^z = 4 + 4i \).
7b. Find, carefully, all complex numbers \(z \) with the property that \(\sin z = 10 \).

8. (E) Determine all possible value (or values) for

\[f(z) = \log((1 - i)z) - \log(z), \]

as \(z \) ranges over the complex numbers minus the non-positive reals, and \(\log z \) denotes the Principal Value of the logarithm. For each value \(w_0 \) that you say \(f \) takes, find a specific \(z_0 \) so that \(f(z_0) = w_0 \).

9. Suppose \(f(x, y) = x^2 + y^2i \). Determine the set of \(z \) at which the Cauchy-Riemann equations are satisfied. Determine the set of \(z \) at which \(f \) is differentiable. Determine the set of \(z \) at which \(f \) is analytic.

10a. Let \(\gamma \) denote the circle \(|z| = 2\), traversed in a counter-clockwise fashion. Use the standard estimate for integrals; i.e., p.62(3), to show that

\[\int_{\gamma} \frac{dz}{8 + 3z} \leq 2\pi. \]

10b. By considering \(|8 + 3z|^2\) separately on the semicircles in the half-planes \(x \geq 0 \) and \(x \leq 0 \), improve this estimate to

\[\int_{\gamma} \frac{dz}{8 + 3z} \leq \frac{6}{5} \pi. \]