1. - 17.1 (ungraded); 3. 17.9 (ungraded). Answers in back. Ask if you have a question.

2. - 17.2. Here, \(f(x) = 4 \) if \(x \geq 0 \) and \(f(x) = 0 \) if \(x < 0 \) and \(g(x) = x^2 \) for all real \(x \), and \(\text{dom}(f) = \text{dom}(g) = \mathbb{R} \).

(a) Then \((f + g)(x) = 4 + x^2 \) if \(x \geq 0 \) and \((f + g)(x) = x^2 \) if \(x < 0 \); \((fg)(x) = 4x^2 \) if \(x \geq 0 \) and \((fg)(x) = 0 \) if \(x < 0 \); \((f \circ g)(x) = f(g(x)) = f(x^2) = 4 \) (for all \(x \)) and \((g \circ f)(x) = g(f(x)) = (f(x))^2 = 16 \) if \(x \geq 0 \) and \((g \circ f)(x) = 0 \) if \(x < 0 \). In each of these cases, the domain is \(\mathbb{R} \).

(b) Recall that polynomials are continuous and that if \(f \) jumps at \(x = a \), then it is not continuous at \(a \), because, if \(s_n \to a \) and \(s_n < a \) and \(t_n \to a \), but \(t_n > a \), then \((f(s_n)) \) and \((f(t_n)) \) will converge to different values. On this basis, \(g \), and \(f \circ g \) are polynomials, and so are continuous, but \(f \), \(f + g \) and \(g \circ f \) jump at \(0 \), and so are not continuous there. Note that \(fg \) is not a polynomial, but it doesn’t have a jump at \(x = 0 \), so it’s continuous. (See Homework 8, #8.)

4. - 18.6. Assuming that \(\cos x \) is continuous, let \(f(x) = \cos x - x \), which is also continuous. We have \(f(0) = \cos 0 - 0 = 1 \) and \(f(\frac{\pi}{2}) = \cos(\frac{\pi}{2}) - \frac{\pi}{2} = -\frac{\pi}{2} \). Thus, \(f(0) > 0 > f(\frac{\pi}{2}) \). By the Intermediate Value Theorem, it follows that there exists \(x_0 \in [0, \frac{\pi}{2}] \) so that \(f(x_0) = \cos x_0 - x_0 = 0 \).

5. - 18.10. So, suppose \(f(0) = f(2) \) and \(f \) is continuous on \([0, 2]\). Let \(g(x) = f(x+1) - f(x) \). Then \(g \) is continuous on \([0, 1]\) and \(g(0) + g(1) = f(2) - f(0) = 0 \). Thus, either \(g(0) = g(1) = 0 \), which means that \(f(0) = f(1) = f(2) \), or \(\{g(0), g(1)\} \) consists of one positive and one negative number. No matter which, the IVT implies that there exists \(x \in [0, 1] \) so that \(g(x) = 0 \); that is, \(f(x) = f(x+1) \).

6. - 19.2a. Observe that \(|f(x) - f(y)| = |(3x + 11) - (3y + 11)| = 3|x - y| \). So, given \(\epsilon > 0 \), we see that

\[
|x - y| < \frac{\epsilon}{3} \implies |f(x) - f(y)| = 3|x - y| < \epsilon.
\]

7. - 19.2b. With \(f(x) = x^2 \) on \([0, 3]\), we have

\[
|f(x) - f(y)| = |x^2 - y^2| = |x - y| \cdot |x + y| \leq |x - y| \cdot (3 + 3) = 6|x - y|.
\]

So, given \(\epsilon > 0 \), we see that

\[
|x - y| < \frac{\epsilon}{6} \implies |f(x) - f(y)| \leq 6|x - y| < 6 \cdot \frac{\epsilon}{6} = \epsilon.
\]

8. - 19.6. My hint is for a really fast way to do a. and b. at once. I’ll start with an acceptable solution to the problem that ignores the hint.
a. If \(f(x) = \sqrt{x} \), then \(f'(x) = \frac{1}{2\sqrt{x}} \) is unbounded on \((0, 1]\). This is obvious, but it’s also easily proved: if \(x_n = n^{-2} \in (0, 1] \), then \(f'(x_n) = n/2 \), which is unbounded as \(n \to \infty \). On the other hand, \(f \) is the inverse of the (continuous, monotone) polynomial \(x^2 \), so it is continuous by Theorem 18.4. Theorem 19.2 says that if \(f \) is continuous on a closed interval \([a, b]\), then \(f \) is uniformly continuous on \([a, b]\), so \(f \) is uniformly continuous on \([0, 1]\).

b. To show that \(f \) is uniformly continuous on \([1, \infty)\), observe that

\[
\sqrt{x} - \sqrt{y} = \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} + \sqrt{y}} = \frac{x - y}{\sqrt{x} + \sqrt{y}}.
\]

If \(x, y \geq 1 \), then \(\sqrt{x}, \sqrt{y} \geq 1 \), so the denominator above is at least 2 and

\[
|\sqrt{x} - \sqrt{y}| \leq \frac{|x - y|}{2}.
\]

Thus, if \(\epsilon \) is given, then \(|x - y| < 2\epsilon \) \(\implies \) \(|f(x) - f(y)| < \epsilon \), and so \(f \) is uniformly continuous.

Here is my proof that \(f \) is uniformly continuous on \([0, \infty)\), and this subsumes the results above.

Lemma: Fix \(t > 0 \). Let \(\Phi_t(x) = \sqrt{x + t} - \sqrt{x} \) for \(x \geq 0 \). Then \(\Phi_t \) is strictly decreasing.

Proof: Observe that

\[
\Phi_t(x) = \sqrt{x + t} - \sqrt{x} = \frac{1}{\sqrt{x + t} + \sqrt{x}}.
\]

Since \(x < y \) clearly implies \(\sqrt{x + t} + \sqrt{x} < \sqrt{y + t} + \sqrt{y} \), it follows that \(\Phi_t(x) > \Phi_t(y) \). Taking \(y = 0 \), we see that \(\sqrt{x + t} - \sqrt{x} < \sqrt{t} - \sqrt{0} = \sqrt{t} \). Putting \(t = x - y \), we find the key inequality

\[
\sqrt{y} - \sqrt{x} < \sqrt{y - x}.
\]

(This can also be shown directly, by squaring both sides and transposing.)

Now, suppose \(x, y \geq 0 \) and \(|x - y| < \delta \). Without loss of generality, suppose that \(x \geq y \), so \(\sqrt{x} \geq \sqrt{y} \). Then \(\sqrt{x} - \sqrt{y} < \sqrt{x - y} < \sqrt{\delta} \). Thus, if \(\epsilon > 0 \) is given, then

\[
|x - y| < \epsilon^2 \implies |\sqrt{x} - \sqrt{y}| < \epsilon.
\]

The proof applies to any function \(f \) which is a monotone increasing continuous function on \([0, \infty)\) satisfying \(f(0) = 0 \) and so that \(x \geq y \) implies \(f(x) - f(y) \leq f(x - y) \).

9. – 17.14. This is actually a famous function \(f \) so that, if \(x \in \mathbb{Q} \) is given in lowest terms as \(x = \frac{p}{q} \), then \(f(x) = \frac{1}{q} \), and if \(x \) is irrational, then \(f(x) = 0 \). We have to show that \(f \) is continuous at each irrational \(x \) and not continuous at each rational \(x \).

For the first, suppose \(x \) is irrational and suppose \(\epsilon < 1 \) is given. Choose \(N < \frac{1}{\epsilon} \). The interval \((x - 1, x + 1)\) contains only finitely many rational numbers with denominator \(\leq N \). (In fact, each denominator \(r \) occurs less than \(2r \) times.) None of these rational numbers
equals \(x \), so there exists \(\delta > 0 \) so that if \(|y - x| < \delta \) and \(y \) is rational, then the denominator of \(y \) is \(\geq N \). This means that \(f(y) \leq \frac{1}{N} < \epsilon \) if \(y \) is rational, and of course \(f(y) = 0 \) if \(y \) is irrational. Therefore, \(|x - y| < \delta \) implies that \(|f(x) - f(y)| < \epsilon \), and this means that \(f \) is continuous at \(x \).

If \(x \) is rational, then \(x_n = x + \frac{1}{n} \sqrt{2} \) is irrational and \(\lim x_n = x \). But \(f(x_n) = 0 \) for all \(n \), so \(\lim f(x_n) = 0 \neq f(x) \), and so \(f \) is not continuous at \(x \).

One purpose of this mind-bogglingly non-intuitive example is to show how mind-bogglingly non-intuitive real analysis can be.

10a. – This is known as the “Cauchy Condensation Theorem”. Suppose \((a_n) \) is a decreasing sequence of positive real numbers, and let \(b_n = a_{2^n} \). Prove that \(\sum a_n \) is convergent if and only if \(\sum 2^n b_n \) is convergent. (Hint: the proof of the \(p \)-test on Bonus Notes 8.)

Let \(s_m = \sum_{n=1}^{m} a_n \). Then \((s_m) \) is an increasing sequence, so it’s either bounded above or diverges to \(\infty \). Following the hint, observe that, if \(2^r \leq n < 2^{r+1} \), then \(a_{2^r} \geq a_n \geq a_{2^{r+1}} \); that is, \(b_r \geq a_n \geq b_{r+1} \). Thus, we have for this block of \(2^{r+1} - 2^r = 2^r \) terms

\[
2^r b_r \geq a_{2^r} + \cdots + a_{2^{r+1}-1} > 2^r b_{r+1},
\]

and so, summing from \(r = 0 \) to \(N - 1 \),

\[
\sum_{r=0}^{N-1} 2^r b_r \geq \sum_{r=0}^{N-1} (a_{2^r} + \cdots + a_{2^{r+1}-1}) = \sum_{n=1}^{N-1} a_n \geq \sum_{r=0}^{N-1} 2^r b_{r+1} = \frac{1}{2} \sum_{r=1}^{N} 2^r b_r.
\]

If \(\sum 2^n b_n \) is convergent, then the left hand side is bounded above, and so \(\sum a_n \) is convergent. If \(\sum 2^n b_n \) is divergent, then the right hand side is unbounded and so \(\sum a_n \) is divergent. With \(a_n = n^{-p} \), \(2^n b_n = 2^n (2^n)^{-p} = (2^{1-p})^n \), and the ratio or root test shows convergence if \(p > 1 \) and divergence if \(p \leq 1 \).

10b. Use (a) to determine the values of \(p \) for which

\[
\sum \frac{1}{n (\log n)^p}
\]

converges. We want to use (a), so we need to check that this is decreasing, or, equivalently, that \(\phi(x) = x (\log x)^p \) is increasing. Notice that if \(p < 0 \), then the series diverges with comparison to \(\sum \frac{1}{n} \), so we can assume that \(p \geq 0 \), and then \(\phi'(x) = (\log x)^p + px (\log x)^{p-1} (1/x) \geq 0 \), at least for \(x > e \), which is good enough. Using the preceding, we have

\[
2^n a_{2^n} = \frac{2^n}{2^n (\log 2^n)^p} = \frac{1}{(n \log 2)^p} = \frac{1}{(\log 2)^p} \cdot \frac{1}{n^p}.
\]

By the \(p \)-test, this is convergent if \(p > 1 \) and divergent if \(p \leq 1 \). This problem can also be done by the integral test; noting that

\[
\int \frac{dx}{x (\log x)^p} = \begin{cases} \frac{1}{1-p} \cdot \frac{1}{(\log x)^{p-1}} + C, & \text{if } p \neq 1, \\ \log \log x + C, & \text{if } p = 1. \end{cases}
\]