Math 417 - Test 2 - Material for review.

1. Exam = Wed 4/13/19 in class. Closed book/notes, except for 3”x5” card. Material is class lectures, Fraleigh §9, §11, §13, §14, and homeworks 4, 5, 6, 7

2. Vocabulary - All previous group vocabulary, plus cycles, transpositions, left and right cosets of a subgroup, normal subgroups, homomorphism, isomorphism, automorphism, kernel, image, direct product of groups, the order of an element in a group, no need for groups.

3. No formulas - All previous results

4. Eq
 \[T = \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\} \text{ as } T: 1 \rightarrow 2 \rightarrow 4 \rightarrow 1, 3 \rightarrow 3 \]
 \[T = (2 3 4), \quad T = (2 4 3 1) \]

5. If \(T \) is a subgroup of \(S \), \(T \leq S \) if it is a normal subgroup. \(H \triangleleft S \) if \(H \) is a normal subgroup of \(S \).

6. If \(H \leq S \), the cosets of \(H \) in \(S \) form the factor group \(S/H \).

7. If \(\varphi: S \rightarrow T \) is a homomorphism, know \(\ker(\varphi) = \{ x \in S : \varphi(x) = e_T \} \) and \(\text{im}(\varphi) = \{ y \in T : \exists x \in S \text{ with } \varphi(x) = y \} \).

8. If \(\varphi: S \rightarrow T \) is isomorphic, \(S \) is isomorphic to \(T \).

9. Groups to know: \(C_n \), \(V \), \(S_3 \), \(D_4 \), \(C_m \times C_n \) \(C/\{1\} \times (\mathbb{Z}/m\mathbb{Z}) \).

10. If you know \(C \) and \(H \), you should know \(C \times H \), etc.

11. Results to know: Lagrange's Theorem. If \(H \leq S \) is normal then \(S/H \) is a group. If \(\varphi: S \rightarrow T \) is a homomorphism, then \(\ker(\varphi) \) is a normal subgroup of \(S \), and \(\text{im}(\varphi) \) is a subgroup of \(T \) that is isomorphic to \(S/\ker(\varphi) \).

12. Know how to compute the order of elements in \(C_n \), \(S_3 \), \(D_4 \), etc.

13. Induced product

15. The Sylow Theorem on classifying finite Abelian groups, and, by popular request, non-Euclidean geometry.