Every math major should know this crazy theorem

Bruce Reznick
University of Illinois at Urbana-Champaign

Joint Mathematics Meetings, Baltimore, January 18, 2014
I’ll start with the theorem and two different proofs, then I’ll talk about its star-studded history and then, briefly, how I came upon it.

Theorem

The solutions to the differential equation \(((y'')^{-2/3})''' = 0\) are precisely the non-degenerate conic sections.
That crazy theorem

I’ll start with the theorem and two different proofs, then I’ll talk about its star-studded history and then, briefly, how I came upon it.

Theorem

The solutions to the differential equation \(((y'')^{-2/3})''' = 0\) are precisely the non-degenerate conic sections.

Proof One, Part One.

We see that \((y'')^{-2/3} = c_0 + c_1x + c_2x^2\) for suitable constants \(c_i\), and, taking care to distinguish cases in the quadratic by color,

\[
y'' = 2b_0, \quad \frac{b_0}{(x + b_1)^{3/2}}, \quad \frac{2b_0}{(x + b_1)^3}, \quad \frac{b_2\Delta}{(x^2 + 2b_1x + b_0)^{3/2}}
\]

where in the last, \(\Delta = b_0 - b_1^2 \neq 0\). We can easily solve these equations!
Proof One, Part Two.

\[y'' = 2b_0 \implies y = b_0 x^2 + a_1 x + a_0 \]
Proof One, Part Two.

\[y'' = 2b_0 \implies y = b_0x^2 + a_1x + a_0 \]
Proof One, Part Two.

\[y'' = 2b_0 \implies y = b_0x^2 + a_1x + a_0 \]

\[y'' = \frac{b_0}{(x + b_1)^{3/2}} \implies y = -4b_0\sqrt{x + b_1} + a_1x + a_0 \]

In each case, the solution becomes a conic after simplification.

Bruce Reznick
University of Illinois at Urbana-Champaign

Every math major should know this crazy theorem.
Proof One, Part Two.

\[y'' = 2b_0 \implies y = b_0x^2 + a_1x + a_0 \]
\[y'' = \frac{b_0}{(x + b_1)^{3/2}} \implies y = -4b_0\sqrt{x + b_1} + a_1x + a_0 \]
\[y'' = \frac{2b_0}{(x + b_1)^3} \implies y = \frac{b_0}{x + b_1} + a_1x + a_0 \]
Proof One, Part Two.

\[y'' = 2b_0 \implies y = b_0 x^2 + a_1 x + a_0 \]

\[y'' = \frac{b_0}{(x + b_1)^{3/2}} \implies y = -4b_0 \sqrt{x + b_1} + a_1 x + a_0 \]

\[y'' = \frac{2b_0}{(x + b_1)^3} \implies y = \frac{b_0}{x + b_1} + a_1 x + a_0 \]

\[y'' = \frac{b_2 \Delta}{(x^2 + 2b_1 x + b_0)^{3/2}} \implies \]

\[y = b_2 \sqrt{x^2 + 2b_1 x + b_0} + a_1 x + a_0 \]
Proof One, Part Two.

\[
y'' = 2b_0 \implies y = b_0 x^2 + a_1 x + a_0
\]

\[
y'' = \frac{b_0}{(x + b_1)^{3/2}} \implies y = -4b_0 \sqrt{x + b_1} + a_1 x + a_0
\]

\[
y'' = \frac{2b_0}{(x + b_1)^3} \implies y = \frac{b_0}{x + b_1} + a_1 x + a_0
\]

\[
y'' = \frac{b_2 \Delta}{(x^2 + 2b_1 x + b_0)^{3/2}} \implies y = b_2 \sqrt{x^2 + 2b_1 x + b_0} + a_1 x + a_0
\]

In each case, the solution becomes a conic after simplification.
Conversely, if one solves for y in

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

then either we obtain one of the four indicated outcomes for y, or the conic is degenerate. In this case y is linear, and computing $(y'')^{-2/3}$ isn’t a good idea anyway.
Proof One, Part Three.

Conversely, if one solves for y in

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

then either we obtain one of the four indicated outcomes for y, or the conic is degenerate. In this case y is linear, and computing $(y'')^{-2/3}$ isn’t a good idea anyway.
Proof One, Part Three.

Conversely, if one solves for y in

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

then either we obtain one of the four indicated outcomes for y, or the conic is degenerate. In this case y is linear, and computing $(y'')^{-2/3}$ isn’t a good idea anyway.

Here are answers to some natural follow-up questions.
Conversely, if one solves for y in

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

then either we obtain one of the four indicated outcomes for y, or the conic is degenerate. In this case y is linear, and computing $(y'')^{-2/3}$ isn’t a good idea anyway.

Here are answers to some natural follow-up questions.

$$(y'')^{-2/3} = \frac{2}{9(y'')^{8/3}} (5(y''')^2 - 3y''y'''),$$
Proof One, Part Three.

Conversely, if one solves for y in

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

then either we obtain one of the four indicated outcomes for y, or the conic is degenerate. In this case y is linear, and computing $(y'')^{-2/3}$ isn’t a good idea anyway.

Here are answers to some natural follow-up questions.

$$((y'')^{-2/3})'' = \frac{2}{9(y'')^{8/3}} (5(y''')^2 - 3y''y'''),$$

$$((y'')^{-2/3})''' = \frac{-2}{27(y'')^{11/3}} (9(y'')^2 y'''' - 45y''y'''y''' + 40(y''')^3).$$
Proof One, Part Three.

Conversely, if one solves for y in

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

then either we obtain one of the four indicated outcomes for y, or the conic is degenerate. In this case y is linear, and computing $(y'')^{-2/3}$ isn't a good idea anyway.

Here are answers to some natural follow-up questions.

\[
((y'')^{-2/3})'' = \frac{2}{9(y'')^{8/3}} (5(y''')^2 - 3y'' y'''),
\]

\[
((y'')^{-2/3})''' = \frac{-2}{27(y'')^{11/3}} (9(y'')^2 y''''' - 45y'' y''' y'''' + 40(y''')^3).
\]

Also, if $x^2 + 2Bxy + y^2 = 1$, $|B| \neq 1$, then

\[
((y'')^{-2/3})'''' = 2(B^2 - 1)^{1/3}.
\]
More generally, suppose

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

$$\Delta = ACF + 2BDE - AE^2 - CD^2 - FB^2$$
More generally, suppose

\[Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0, \]

\[\Delta = ACF + 2BDE - AE^2 - CD^2 - FB^2 \]

Here, \(\Delta \) is the discriminant of the (homogenized) ternary quadratic form \(Ax^2 + 2Bxy + Cy^2 + 2Dxz + 2Eyz + Fz^2 \), and \(\Delta = 0 \) if and only if this quadratic form has rank \(< 3\) if and only if it is reducible if and only if the conic is degenerate. A Mathematica computation shows that, in this case,
More generally, suppose

\[Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0, \]
\[\Delta = ACF + 2BDE - AE^2 - CD^2 - FB^2 \]

Here, \(\Delta \) is the discriminant of the (homogenized) ternary quadratic form \(Ax^2 + 2Bxy + Cy^2 + 2Dxz + 2Eyz + Fz^2 \), and \(\Delta = 0 \) if and only if this quadratic form has rank < 3 if and only if it is reducible if and only if the conic is degenerate. A Mathematica computation shows that, in this case,

\[((y'')^{-2/3})'' = \frac{2(B^2 - AC)}{\Delta^{2/3}}. \]

We see that this invariant is positive on hyperbolas, zero on parabolas and negative on ellipses and circles.
Here’s the second approach, which has the advantage of melding linear algebra with calculus.
Here’s the second approach, which has the advantage of melding linear algebra with calculus.

Proof Two, Part One.

Suppose

\[Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0. \]

Since the coefficients are constants, by implicit differentiation, we have

\[A(2x) + 2B(xy' + y) + C(2yy') + 2D(1) + 2E(y') + F(0) = 0. \]

Do this four more times and then observe that we have a \(6 \times 6\) linear system with non-trivial solution \((A, 2B, \ldots)\).
Proof Two, Part Two.

Here's the coefficient matrix in detail:

\[
\begin{pmatrix}
 x^2 & xy & y^2 & x & y & 1 \\
 2x & xy' + y & 2yy' & 1 & y' & 0 \\
 2 & xy'' + 2y' & 2yy'' + 2(y')^2 & 0 & y'' & 0 \\
 0 & xy''' + 3y'' & 2yy''' + 6y'y'' & 0 & y''' & 0 \\
 0 & xy'''' + 4y''' & 2yy'''' + 8y'y'''+ 6(y'')^2 & 0 & y'''' & 0 \\
 0 & xy''''+ 5y''' & 2yy''''+ 10y'y''' + 20y''y''' & 0 & y'''& 0 \\
\end{pmatrix}
\]

It has non-trivial nullvector \((A, 2B, C, 2D, E, F)\), so the determinant must be zero. Mathematica, helpfully, says this determinant is

\[
4y''(9(y'')^2y''' - 45y'y'y''' + 40(y''')^3) = -54(y'') - \frac{8}{3}((y'') - \frac{2}{3})y''''.
\]

Every math major should know this crazy theorem.
Proof Two, Part Two.

Here's the coefficient matrix in detail:

$$
\begin{pmatrix}
 x^2 & xy & y^2 & x & y & 1 \\
 2x & xy' + y & 2yy' & 1 & y' & 0 \\
 2 & xy'' + 2y' & 2yy'' + 2(y')^2 & 0 & y'' & 0 \\
 0 & xy''' + 3y'' & 2yy''' + 6y'y'' & 0 & y''' & 0 \\
 0 & xy'''' + 4y''' & 2yy'''' + 8y'y''' + 6(y'')^2 & 0 & y'''' & 0 \\
 0 & xy''''' + 5y''''' & 2yy''''' + 10y'y''''' + 20y''y''' & 0 & y''''' & 0 \\
\end{pmatrix}
$$

It has non-trivial nullvector \((A, 2B, C, 2D, E, F)_t\), so the determinant must be zero. Mathematica, helpfully, says this determinant is

$$4y''(9(y'')^2 - 45y'y''y''' + 40(y''')^3) = -54(y'') - 8/3((y'') - 2/3)^{''''}.$$

Bruce Reznick University of Illinois at Urbana-Champaign

Every math major should know this crazy theorem.
Proof Two, Part Two.

Here's the coefficient matrix in detail:

\[
\begin{pmatrix}
 x^2 & xy & y^2 & x & y & 1 \\
 2x & xy' + y & 2yy' & 1 & y' & 0 \\
 2 & xy'' + 2y' & 2yy'' + 2(y')^2 & 0 & y'' & 0 \\
 0 & xy''' + 3y'' & 2yy''' + 6y'y'' & 0 & y''' & 0 \\
 0 & xy'''' + 4y''' & 2yy'''' + 8y'y''' + 6(y'')^2 & 0 & y'''' & 0 \\
 0 & xy''''' + 5y'''' & 2yy''''' + 10y'y'''' + 20y'y'''' & 0 & y''''' & 0 \\
\end{pmatrix}
\]

It has non-trivial nullvector \((A, 2B, C, 2D, 2E, F)^t\), so the determinant must be zero. Mathematica, helpfully, says this determinant is

\[
4y''(9(y'')^2y''''' - 45y''y'''y'''' + 40(y''')^3)
\]
Proof Two, Part Two.

Here's the coefficient matrix in detail:

\[
\begin{pmatrix}
x^2 & xy & y^2 & x & y & 1 \\
2x & xy' + y & 2yy' & 1 & y' & 0 \\
2 & xy'' + 2y' & 2yy'' + 2(y')^2 & 0 & y'' & 0 \\
0 & xy''' + 3y'' & 2yy''' + 6y'y'' & 0 & y''' & 0 \\
0 & xy'''' + 4y''' & 2yy'''' + 8y'y''' + 6(y'')^2 & 0 & y'''' & 0 \\
0 & xy''''' + 5y''''' & 2yy''' + 10y'y'''' + 20y''y''' & 0 & y''''' & 0 \\
\end{pmatrix}
\]

It has non-trivial nullvector \((A, 2B, C, 2D, 2E, F)^t\), so the determinant must be zero. Mathematica, helpfully, says this determinant is

\[
4y''(9(y'')^2y'''' - 45y''y'''y''' + 40(y''')^3) \\
= -54(y'')^{-8/3}((y'')^{-2/3})'''
\]
It is surprising to me that such a simple theorem seems to be so scantly represented in the literature. (Of course, I may simply be ignorant: please let me know of other sources!) This talk is too brief to do justice to the broader context of the work of these famous mathematicians.

The theorem, with \(9y''^2 - 45y'y'''y'''' + 40(y'''^3) \), is due to Gaspard Monge (1746-1818) in 1809. George Boole (1815-1864) referred to Monge's theorem in 1844, in his text on differential equations, adding: "But here our powers of geometrical interpretation fail, and results such as this can scarcely be otherwise useful than as a registry of integrable forms."
It is surprising to me that such a simple theorem seems to be so scantly represented in the literature. (Of course, I may simply be ignorant: please let me know of other sources!) This talk is too brief to do justice to the broader context of the work of these famous mathematicians.

- The theorem, with $9(y'')^2y'''' - 45y''y'''y'''' + 40(y''')^3$, is due to Gaspard Monge (1746-1818) in 1809.

George Boole (1815-1864) referred to Monge's theorem in 1844, in his text on differential equations, adding: "But here our powers of geometrical interpretation fail, and results such as this can scarcely be otherwise useful than as a registry of integrable forms."
It is surprising to me that such a simple theorem seems to be so scantly represented in the literature. (Of course, I may simply be ignorant: please let me know of other sources!) This talk is too brief to do justice to the broader context of the work of these famous mathematicians.

- The theorem, with $9(y'')^2 y'''' - 45y'' y'''y'''' + 40(y''')^3$, is due to Gaspard Monge (1746-1818) in 1809.
- George Boole (1815-1864) referred to Monge’s theorem in 1844, in his text on differential equations, adding:
History

It is surprising to me that such a simple theorem seems to be so scantily represented in the literature. (Of course, I may simply be ignorant: please let me know of other sources!) This talk is too brief to do justice to the broader context of the work of these famous mathematicians.

- The theorem, with \(9(y'')^2y'''' - 45y''y'''y'''' + 40(y''')^3 \), is due to Gaspard Monge (1746-1818) in 1809.
- George Boole (1815-1864) referred to Monge’s theorem in 1844, in his text on differential equations, adding:

 But here our powers of geometrical interpretation fail, and results such as this can scarcely be otherwise useful than as a registry of integrable forms.
George Halphen (1844-1889) published the \(((y'')^{-2/3})'''\) version in 1879 in a very short paper in *Bulletin de la Société mathématique*. Halphen did much work on enumeration problems related to curves.

James Joseph Sylvester (1814-1897) cited Boole (but strangely, not Halphen) in also giving the shorter formula in 1886. Sylvester's main interest was in reciprocants, which were invariants for a curve \(f(x, y) = 0\) which are unchanged when \(x\) and \(y\) are permuted.

Élie Joseph Cartan (1869-1951) referred to the shorter version, credited to Halphen, in his *Leçons sur la théorie des espaces à connexion projective* of 1937. The citation of Halphen was helpful for me here.

Alain Lascoux (1944-2013) wrote about it in 2006 in a broader context, and his paper had references to Halphen, Monge and Sylvester. When I found the \(((y'')^{-2/3})'''\) version, I wrote a group of friends to see if they knew it. One mentioned it to Tom Craven, who pointed me to Lascoux.

Bruce Reznick University of Illinois at Urbana-Champaign

Every math major should know this crazy theorem
George Halphen (1844-1889) published the \(((y'')^{-2/3})'''\) version in 1879 in a very short paper in *Bulletin de la Société mathématique*. Halphen did much work on enumeration problems related to curves.

James Joseph Sylvester (1814-1897) cited Boole (but strangely, not Halphen) in also giving the shorter formula in 1886. Sylvester’s main interest was in reciprocants, which were invariants for a curve \(f(x, y) = 0\) which are unchanged when \(x\) and \(y\) are permuted.
George Halphen (1844-1889) published the \(((y''')^{-2/3})'''\) version in 1879 in a very short paper in *Bulletin de la Société mathématique*. Halphen did much work on enumeration problems related to curves.

James Joseph Sylvester (1814-1897) cited Boole (but strangely, not Halphen) in also giving the shorter formula in 1886. Sylvester’s main interest was in reciprocants, which were invariants for a curve \(f(x, y) = 0\) which are unchanged when \(x\) and \(y\) are permuted.

Élie Joseph Cartan (1869-1951) referred to the shorter version, credited to Halphen, in his *Leçons sur la théorie des espaces à connexion projective* of 1937. The citation of Halphen was helpful for me here.
George Halphen (1844-1889) published the \(((y'')^{-2/3})'''\) version in 1879 in a very short paper in *Bulletin de la Société mathématique*. Halphen did much work on enumeration problems related to curves.

James Joseph Sylvester (1814-1897) cited Boole (but strangely, not Halphen) in also giving the shorter formula in 1886. Sylvester’s main interest was in reciprocants, which were invariants for a curve \(f(x, y) = 0 \) which are unchanged when \(x \) and \(y \) are permuted.

Élie Joseph Cartan (1869-1951) referred to the shorter version, credited to Halphen, in his *Leçons sur la théorie des espaces à connexion projective* of 1937. The citation of Halphen was helpful for me here.

Alain Lascoux (1944-2013) wrote about it in 2006 in a broader context, and his paper had references to Halphen, Monge and Sylvester. When I found the \(((y'')^{-2/3})'''\) version, I wrote a group of friends to see if they knew it. One mentioned it to Tom Craven, who pointed me to Lascoux.
Sylvester’s work was part of his monumental (> 200 pages) series of lectures on the Theory of Reciprocants, delivered at Oxford in 1886, three years after he became the Savilian Professor of Geometry there. Sylvester had trouble finding the original Monge reference, and apparently his colleagues in Paris couldn’t help him. But “knowing how scrupulous and painstaking Boole was, and the least likely of all men to make a quotation at random”, he persisted, and ultimately wrote
Sylvester’s work was part of his monumental (> 200 pages) series of lectures on the Theory of Reciprocants, delivered at Oxford in 1886, three years after he became the Savilian Professor of Geometry there. Sylvester had trouble finding the original Monge reference, and apparently his colleagues in Paris couldn’t help him. But “knowing how scrupulous and painstaking Boole was, and the least likely of all men to make a quotation at random”, he persisted, and ultimately wrote

To think that a task found impossible in London and Paris should have been accomplished in the most satisfactory manner at Yale and Michigan!
Sylvester’s work was part of his monumental (>200 pages) series of lectures on the Theory of Reciprocants, delivered at Oxford in 1886, three years after he became the Savilian Professor of Geometry there. Sylvester had trouble finding the original Monge reference, and apparently his colleagues in Paris couldn’t help him. But “knowing how scrupulous and painstaking Boole was, and the least likely of all men to make a quotation at random”, he persisted, and ultimately wrote

To think that a task found impossible in London and Paris should have been accomplished in the most satisfactory manner at Yale and Michigan!
Sylvester’s work was part of his monumental (> 200 pages) series of lectures on the Theory of Reciprocants, delivered at Oxford in 1886, three years after he became the Savilian Professor of Geometry there. Sylvester had trouble finding the original Monge reference, and apparently his colleagues in Paris couldn’t help him. But “knowing how scrupulous and painstaking Boole was, and the least likely of all men to make a quotation at random”, he persisted, and ultimately wrote

To think that a task found impossible in London and Paris should have been accomplished in the most satisfactory manner at Yale and Michigan!

Sylvester also sought help at the “Universal Knowledge and Information Office”, but there’s no time to elaborate on that steampunk-y, but 100% not-made-up name!
How I got involved

Five points in the plane, no four on a line, determine a unique conic. I gave a talk on the following topic last August, at the SIAM Meeting on Applied Algebraic Geometry in Ft. Collins.
How I got involved

Five points in the plane, no four on a line, determine a unique conic. I gave a talk on the following topic last August, at the SIAM Meeting on Applied Algebraic Geometry in Ft. Collins.

Definition

A set S is *hyperbolesque* if the conic determined by any five points from S is a hyperbola.

A set S is *elliptesque* if the conic determined by any five points from S is an ellipse (or circle).

Assume S is a C^5 curve and take 5 points infinitesimally close to a point P: the sign of $5(y'''^2 - 3y''y'''$ at P determines the character of the conic. This immediately suggested looking at $(y'')^{-2/3})''$.
How I got involved

Five points in the plane, no four on a line, determine a unique conic. I gave a talk on the following topic last August, at the SIAM Meeting on Applied Algebraic Geometry in Ft. Collins.

Definition

A set \(S \) is \textit{hyperbolesque} if the conic determined by any five points from \(S \) is a hyperbola.

A set \(S \) is \textit{elliptesque} if the conic determined by any five points from \(S \) is an ellipse (or circle).

Assume \(S \) is a \(C^5 \) curve and take 5 points infinitesimally close to a point \(P \): the sign of \(5(y''')^2 - 3y''y''' \) at \(P \) determines the character of the conic. This immediately suggested looking at \((y'')^{-2/3})'' \).

If you are interested in more, go to my website on Monday or Tuesday [well, Friday]. I will have this talk, the Ft. Collins talk and links to the original documents mentioned above.
How I got involved

Five points in the plane, no four on a line, determine a unique conic. I gave a talk on the following topic last August, at the SIAM Meeting on Applied Algebraic Geometry in Ft. Collins.

Definition

A set S is *hyperbolesque* if the conic determined by any five points from S is a hyperbola.

A set S is *elliptesque* if the conic determined by any five points from S is an ellipse (or circle).

Assume S is a C^5 curve and take 5 points infinitesimally close to a point P: the sign of $5(y''')^2 - 3y''y'''$ at P determines the character of the conic. This immediately suggested looking at $((y'')^{-2/3})''$.

If you are interested in more, go to my website on Monday or Tuesday [well, Friday]. I will have this talk, the Ft. Collins talk and links to the original documents mentioned above.

Bruce Reznick University of Illinois at Urbana-Champaign

Every math major should know this crazy theorem
Finally, I have two excellent students, Katie Anders and Jennifer Lansing, who are completing their PhDs this year at the University of Illinois in combinatorial number theory, and who are at this conference.
Thank you!