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“An idea which can be used only once is a trick. If you can use it
more than once it becomes a method.” – George Pólya and Gábor
Szegö

Mathematics is the art of logic and formulas are its poetry.

I have always been fascinated by exact formulas, especially finite
ones such as polynomial identities.

They can seem easy and superficial, but the fact that they are true
without hypotheses can make mathematicians uncomfortable.

They don’t need us.

They come into view unexpectedly, like meteorites on a vast Arctic
plain. Once we see them and stare at them long enough, we find
that the best identities can signify deep and distant phenomena.
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Szegö
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The two square identity is widely used in algebra and number
theory:

(a2 + b2)(x2 + y2) = (ax − by)2 + (bx + ay)2

It can be derived by using the commutative and associative law for
complex numbers:(

(a + ib)(a− ib)

)(
(x + iy)(x − iy)

)
(

(ax − by) + i(bx + ay)

)(
(ax − by)− i(bx + ay)

)
=

(
(a + ib)(x + iy)

)(
(a− ib)(x − iy)

)
,

And by setting (a, b) = (cos t, sin t), it shows that distance is
invariant under a rotation of axes.

Not bad for one identity.
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Not all identities are interesting, of course. Sometimes they’re just
a consequence of linear dependence. For example, who cares that

(x + 2y)2 + (2x + 3y)2 + (3x + 4y)2 = 14x2 + 40xy + 29y2 ?

The left hand side has to equal ... some binary quadratic form.
Of course, identities based on dependence can become interesting
if their coefficients have additional properties.

Two examples are the binomial theorem and the formula for the
n-th difference:

n∑
k=0

(
n

k

)
xn−kyk = (x + y)n

n∑
k=0

(−1)n−k
(

n

k

)
(x + ky)n = n! yn.

Identities are also interesting if there are many fewer summands
than you’d expect.
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What do we demand from a “good” polynomial identity?

“Astonish me!” – Sergei Diaghilev to Jean Cocteau, on what he
wanted in the libretto to the ballet “Parade”.

This talk consists of stories about some semi-astonishing identities:
their deeper meanings and how they can (or maybe should) be
derived.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



What do we demand from a “good” polynomial identity?

“Astonish me!” – Sergei Diaghilev to Jean Cocteau, on what he
wanted in the libretto to the ballet “Parade”.

This talk consists of stories about some semi-astonishing identities:
their deeper meanings and how they can (or maybe should) be
derived.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



What do we demand from a “good” polynomial identity?

“Astonish me!” – Sergei Diaghilev to Jean Cocteau, on what he
wanted in the libretto to the ballet “Parade”.

This talk consists of stories about some semi-astonishing identities:
their deeper meanings and how they can (or maybe should) be
derived.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



The first identity must have its roots in 19th century mathematics,
although in this explicit form, I’ve only been able to trace it back
to the mid 1950s. It’s one of a family, and it’s not accidental in
this version that (12 + (

√
3)2)5 = 210 = 1024:

1024x10 + 1024y10 + (x +
√

3 y)10 + (x −
√

3 y)10

+(
√

3 x + y)10 + (
√

3 x − y)10 = 1512(x2 + y2)5
(1)

The story of (1) and (4) (a few slides from now) and their
generalizations runs through at least number theory, numerical
analysis, functional analysis and combinatorics.
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The second identity is very old; it goes back to Viète:

x3 + y3 =

(
x4 + 2xy3

x3 − y3

)3

+

(
y4 + 2x3y

y3 − x3

)3

, (2)

This is used to show that a sum of two cubes of rational numbers
can usually be so expressed in infinitely many ways. For example:

23 + 13 =

(
20

7

)3

+

(
−17

7

)3

=

(
−36520

90391

)3

+

(
188479

90391

)3

= . . .

The story here is a description of all homogeneous solutions to

x3 + y3 = p3(x , y) + q3(x , y), p, q ∈ C(x , y).

Viète’s derivation of his identity, curiously, is formally identical to a
common technique in the modern study of elliptic curves.
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The third identity was independently found by Desboves (1880)
and Elkies (1995):

(x2 +
√

2 x y − y2)5 + (i x2 −
√

2 x y + i y2)5 +

(−x2 +
√

2 x y + y2)5 + (−i x2 −
√

2 x y − i y2)5 = 0.
(3)

It can be discovered by observing that

3∑
k=0

(ikx2 + i2ka x y + i3ky2)5 = 40a(a2 + 2)(x7y3 + x3y7),

and then setting a =
√
−2 and y → i y . But why

√
−2? The full

story ultimately depends on Newton’s Theorem on symmetric
polynomials. Commutative algebra and algebraic geometry also
play a role, but Felix Klein would say it’s all based on the cube.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



The third identity was independently found by Desboves (1880)
and Elkies (1995):

(x2 +
√

2 x y − y2)5 + (i x2 −
√

2 x y + i y2)5 +

(−x2 +
√

2 x y + y2)5 + (−i x2 −
√

2 x y − i y2)5 = 0.
(3)

It can be discovered by observing that

3∑
k=0

(ikx2 + i2ka x y + i3ky2)5 = 40a(a2 + 2)(x7y3 + x3y7),

and then setting a =
√
−2 and y → i y . But why

√
−2? The full

story ultimately depends on Newton’s Theorem on symmetric
polynomials. Commutative algebra and algebraic geometry also
play a role, but Felix Klein would say it’s all based on the cube.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



The fourth identity was used by Liouville to show that every
positive integer is a sum of at most 53 4th powers of integers:∑

1≤i<j≤4

(
(xi + xj)

4 + (xi − xj)
4
)

= 6(x2
1 + x2

2 + x2
3 + x2

4 )2. (4)

Many similar and more complicated formulas were found in the
late 19th century, until Hilbert showed that they must exist in all
degrees.
As one indication of their geometric and combinatorial significance,
if you take the the coordinates of the coefficients of the 2

(4
2

)
linear

forms in (4), together with their antipodes, you get the 24 points
(±1,±1, 0, 0) and their permutations.

These are the vertices of a regular polytope in R4 called the 24-cell.
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One idea used a lot in this talk is, I hope, fairly familiar. Suppose
2 ≤ d ∈ N. Let

ζd = e
2πi
d = cos

(
2π

d

)
+ i sin

(
2π

d

)
denote a primitive d-th root of unity: the solutions to the equation
zd = 1 are given by { ζkd : 0 ≤ k ≤ d − 1}.

Since the sum below is a finite geometric progression, it is easy to
see that

Lemma

d−1∑
r=0

(
ζkd

)r
=

{
d , if d | k;

0, otherwise.

We’ll use this lemma in sums of polynomials “synched” with
powers of ζd , so that only every d-th monomial can possibly occur.
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Let’s look at the first identity again and pull out a factor of 210:

1024x10 + 1024y10 + (x +
√

3 y)10 + (x −
√

3 y)10

+(
√

3 x + y)10 + (
√

3 x − y)10 = 1512(x2 + y2)5.

becomes

x10 + y10 +

(
1

2
x +

√
3

2
y

)10

+

(
1

2
x −
√

3

2
y

)10

+

(√
3

2
x +

1

2
y

)10

+

(√
3

2
x − 1

2
y

)10

=
189

128

(
x2 + y2

)5
.

It’s looking better already. You may recognize this as
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5∑
j=0

(
cos

(
jπ

6

)
x + sin

(
jπ

6

)
y

)10

=
189

128
(x2 + y2)5.

(The first explicit appearance I’ve found of the underlying general
theorem below is in a paper of Avner Friedman (1957).)

Theorem

If d > r , then for all θ,

d−1∑
j=0

(
cos

(
2jπ

2d
+ θ

)
x + sin

(
2jπ

2d
+ θ

)
y

)2r

=
d

22r

(
2r

r

)
(x2 + y2)r

(5)

Taking d = 6, r = 5 and θ = 0 in (5) and noting 6
210

(10
5

)
= 6·252

1024

= 1512
1024 = 189

128 , we get (1).

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



5∑
j=0

(
cos

(
jπ

6

)
x + sin

(
jπ

6

)
y

)10

=
189

128
(x2 + y2)5.

(The first explicit appearance I’ve found of the underlying general
theorem below is in a paper of Avner Friedman (1957).)

Theorem

If d > r , then for all θ,

d−1∑
j=0

(
cos

(
2jπ

2d
+ θ

)
x + sin

(
2jπ

2d
+ θ

)
y

)2r

=
d

22r

(
2r

r

)
(x2 + y2)r

(5)

Taking d = 6, r = 5 and θ = 0 in (5) and noting 6
210

(10
5

)
= 6·252

1024

= 1512
1024 = 189

128 , we get (1).

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



The fastest proof of the Theorem is to derive it from another
formula, which uses synching at its best. Expand the left-hand side
below, switch the order of summation and recall that ζ2m2d = ζmd .

d−1∑
j=0

(ζ j2du + ζ−j2d v)2r

=
2r∑
k=0

(
2r

k

)d−1∑
j=0

ζ
j(2r−k)+(−j)k
2d

 u2r−kvk

=
2r∑
k=0

(
2r

k

)d−1∑
j=0

(
ζr−kd

)j u2r−kvk

As we’ve seen, the inner sum is zero unless d | r − k. Since d > r ,
the only multiple of d in {−r ,−(r − 1), . . . , 0, . . . , r − 1, r} is 0,
corresponding to k = r , so

d−1∑
j=0

(ζ j2du + ζ−j2d v)2r = d

(
2r

r

)
urv r .
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corresponding to k = r , so

d−1∑
j=0

(ζ j2du + ζ−j2d v)2r = d

(
2r

r

)
urv r .
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Finally, we substitute u = 1
2e iθ(x + y

i ) and v = 1
2e−iθ(x − y

i ) into

d−1∑
j=0

(ζ j2du + ζ−j2d v)2r = d

(
2r

r

)
urv r .

Note that e iθ = cos θ + i sin θ and θ doesn’t have to be real! By
the usual methods, a rearrangement gives

ζ j2du + ζ−j2d v = cos

(
2jπ

2d
+ θ

)
x + sin

(
2jπ

2d
+ θ

)
y ,

u v =
x2 + y2

4
,

and this proves the Theorem.
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It’s worth looking at the formula again and making it asymmetric:

d ≥ r + 1 =⇒
d−1∑
j=0

ζ2jr2d (u + ζ−2j2d v)2r = d

(
2r

r

)
urv r .

d−1∑
j=0

ζ jrd (u + ζ−jd v)2r = d

(
2r

r

)
urv r .

The simplest possible case is r = 1 and d = 2 and ζ2 = −1. This
becomes

(u + v)2 − (u − v)2 = 2

(
2

1

)
uv = 4uv

If you set u = m2, v = n2 and transpose, you get the shape of the
familiar parameterization of Pythagorean triples:

(m2 − n2)2 + (2mn)2 = (m2 + n2)2.
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Every 19th century math major knew that tan(π8 ) =
√

2− 1, so if

we take r = 7 and d = 8 in the Theorem and let λ = 338 + 239
√

2
and α =

√
2− 1, and do some minor bookkeeping, we get

2048x14 + 2048y14 + 16(x + y)14 + 16(x − y)14+

λ
(
(x + αy)14 + (x − αy)14 + (αx + y)14 + (αx − y)14

)
= 3432(x2 + y2)7.
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Every 19th century math major knew that tan(π8 ) =
√

2− 1, so if

we take r = 7 and d = 8 in (5) and let λ = 338 + 239
√

2 and
α =
√

2− 1, and do some minor bookkeeping, we get

2048x14 + 2048y14 + 16(x + y)14 + 16(x − y)14+

λ
(
(x + αy)14 + (x − αy)14 + (αx + y)14 + (αx − y)14

)
= 3432(x2 + y2)7.

To be sure, if you replace {α, λ, 2048, 16} with unknowns and ask
Mathematica to solve for them, it will do so, almost
instantaneously.

But it won’t know why.

Or appreciate just how astonishingly groovy this identity is!

But it’s actually useful, in a formulation that goes back to the
1860’s.
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Corollary

If d > r , θ ∈ R is arbitrary and p(x , y) is a polynomial with degree
≤ 2r + 1, then

1

2π

∫ 2π

0
p(cos t, sin t) dt

=
1

2d

2d−1∑
j=0

p
(

cos
(
2jπ
2d + θ

)
, sin

(
2jπ
2d + θ

))
.

There are similar formulas in n > 2 variables, as we’ll see later.
The main reason these are less explicit than for two variables is
this: 2011 points placed evenly on a circle clearly should be the
vertices of a regular 2011-gon. How should you place 2011 points
“evenly” on the surface of Sn−1?
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In 1591 (or 1593), François Viète published a revolutionary work
on algebra which has been translated into English as The Analytic
Art by T. R. Witmer. Viète’s “Zetetic XVIII” is

Given two cubes, to find numerically two other cubes the
sum of which is equal to the difference between those
that are given.

I’ll quote Viète’s proof on the next page. Keep in mind that he was
working at the dawn of algebra, when mathematicians were not yet
comfortable with negative numbers and the algebraic conventions
were very fluid. Viète used vowels as variables and consonants as
constants.
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“Let the two given cubes be B3 and D3, the first to be greater and
the second to be smaller. Two other cubes are to be found, the
sum of which is equal to B3 − D3. Let B − A be the root of the
first one that is to be found, and let B2A/D2 − D be the root of
the second. Forming the cubes and comparing them with B3 −D3,
it will be found that 3D3B/(B3 + D3) equals A. The root of the
first cube to be found, therefore, is [B(B3 − 2D3)]/(B3 + D3) and
of the second is [D(2B3 − D3)]/(B3 + D3). And the sum of the
two cubes of these is equal to B3 − D3.”

That is,

B3 − D3 =

(
B(B3 − 2D3)

B3 + D3

)3

+

(
D(2B3 − D3)

B3 + D3

)3

.
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By setting B = x and D = −y , Viète’s formula becomes (2):

x3 + y3 =

(
x(x3 + 2y3)

x3 − y3

)3

+

(
y(y3 + 2x3)

y3 − x3

)3

.

We’ll explain later just how smart Viète was to choose the
coefficients he used.

Jeremy Rouse (HMC 2003) and I have just written a paper in
which we examine the more general equation

x3 + y3 = p3(x , y) + q3(x , y) (6)

for homogeneous rational functions p, q ∈ C(x , y). You can find it
on the arXiv, and it will appear in the IJNT.
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To examine this equation, we take a common denominator for the
rational functions p, q and rewrite as:

x3 + y3 =

(
f (x , y)

h(x , y)

)3

+

(
g(x , y)

h(x , y)

)3

=⇒ h(x , y)3(x3 + y3) = f (x , y)3 + g(x , y)3.

(7)

It follows that if π(x , y) is irreducible and π divides any two of
{f , g , h}, then it divides the third. Also note that f and g may be
permuted and cube roots of unity ωj may appear. Assume that
f , g , h are forms (that is, homogeneous). If deg f = deg g = d ,
then we call (7) a solution of degree d .
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Here is a roster of all the solutions of degree ≤ 11.

There’s an obvious solution of degree 1: (f , g , h) = (x , y , 1).
Viète’s solution has degree 4, but there’s also one of degree 3.

Let ζ = ζ12 =
√
3
2 + i

2 , and observe that ζ + ζ−1 =
√

3 and
ζ3 + ζ−3 = i − i = 0. Then

(ζu + ζ−1v)3 + (ζ−1u + ζv)3

= (ζ3 + ζ−3)(u3 + v3) + 3(ζ + ζ−1)(u2v + uv2)

= 3
√

3uv(u + v).

After (u, v) 7→ (x3, y3), this rearranges to:

x3 + y3 =

(
ζx3 + ζ−1y3

√
3xy

)3

+

(
ζ−1x3 + ζy3

√
3xy

)3

. (8)

Let’s call this the small solution.
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Viète’s solution has degree 4, but there’s also one of degree 3.

Let ζ = ζ12 =
√
3
2 + i

2 , and observe that ζ + ζ−1 =
√

3 and
ζ3 + ζ−3 = i − i = 0. Then

(ζu + ζ−1v)3 + (ζ−1u + ζv)3

= (ζ3 + ζ−3)(u3 + v3) + 3(ζ + ζ−1)(u2v + uv2)

= 3
√

3uv(u + v).

After (u, v) 7→ (x3, y3), this rearranges to:

x3 + y3 =

(
ζx3 + ζ−1y3

√
3xy

)3

+

(
ζ−1x3 + ζy3

√
3xy

)3

. (8)

Let’s call this the small solution.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



Here is a roster of all the solutions of degree ≤ 11.

There’s an obvious solution of degree 1: (f , g , h) = (x , y , 1).
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Let’s call this the small solution.
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There are two solutions of degree 7 which are complex conjugates
of each other. Here’s one of them.

f (x , y) = x(x6 + (−1 + 3
√

3i)(x3y3 + y6)),

g(x , y) = y((−1 + 3
√

3i)(x6 + x3y3) + y6),

h(x , y) = x6 +

(
5− 3

√
3i

2

)
x3y3 + y6.

There is one degree 9 solution, with real integral coefficients:

f (x , y) = x9 + 6x6y3 + 3x3y6 − y9,

g(x , y) = −x9 + 3x6y3 + 6x3y6 + y9,

h(x , y) = 3xy(x6 + x3y3 + y6).
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In addition to the symmetries mentioned earlier, there is a natural
composition of two solutions to the Viéte equation. Suppose

x3 + y3 = p3
1(x , y) + q3

1(x , y) = p3
2(x , y) + q3

2(x , y).

Then if we compose the solutions, we see that

p3
1(p2(x , y), q2(x , y)) + q3

1(p2(x , y), q2(x , y))

= p3
2(x , y) + q3

2(x , y) = x3 + y3.

Accordingly, we define (p1, q1) ◦ (p2, q2) = (p3, q3) by

p3(x , y) = p1(p2(x , y), q2(x , y)); q3(x , y) = q1(p2(x , y), q2(x , y)).

The small solution composed with itself gives the (real) degree 9
solution: the roots of unity cancel!
Viète’s solution and the small solution commute, giving the
(unique) solution of degree 12, which is not written here.
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Elliptic curve people know that the line through two points on the
curve X 3 + Y 3 = A intersects the curve in a third point, which,
after reflection, is called the sum of the two points. This defines an
abelian group.

Assuming X 3
j + Y 3

j = A, the addition law works out to be

(X1,Y1) + (X2,Y2) = (X3,Y3),

where

X3 =
A(Y1 − Y2) + X1X2(X1Y2 − X2Y1)

(X 2
1 X2 + Y 2

1 Y2)− (X1X 2
2 + Y1Y 2

2 )
,

Y3 =
A(X1 − X2) + Y1Y2(X2Y1 − X1Y2)

(X 2
1 X2 + Y 2

1 Y2)− (X1X 2
2 + Y1Y 2

2 )
.
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But this formula breaks down when the two points coincide;
instead, take a line tangent to the curve at (X1,Y1). By implicit

differentiation, the slope is −X 2
1

Y 2
1

and we seek t so that

(X1 − t)3 +

(
Y1 + t · X 2

1

Y 2
1

)3

= X 3
1 + Y 3

1

It turns out that there is a double root at t = 0 and a single root at

t = − 3X1Y 3
1

X 3
1−Y 3

1
. Putting this value of t above gives Viète’s identity.

Believe it or not, this is, formally, what Viète was doing! I doubt
he knew about elliptic curves (he was working before Cartesian
coordinates had been invented), but he was one of the first people
to study cubics. He must have known that his particular
substitution would give a double root at zero, leaving the third
root rational.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



But this formula breaks down when the two points coincide;
instead, take a line tangent to the curve at (X1,Y1). By implicit

differentiation, the slope is −X 2
1

Y 2
1

and we seek t so that

(X1 − t)3 +

(
Y1 + t · X 2

1

Y 2
1

)3

= X 3
1 + Y 3

1

It turns out that there is a double root at t = 0 and a single root at

t = − 3X1Y 3
1

X 3
1−Y 3

1
. Putting this value of t above gives Viète’s identity.
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Let’s suppose X ,Y ,A ∈ C(t), and A = 1 + t3. Then our equation
is

X 3(t) + Y 3(t) = 1 + t3 (9)

and if we homogenize (9), by setting t = y/x and multiplying both
sides by x3, then we get (6). In order to fit in this interpretation,
though, keep in mind that every solution (p, q) corresponds to 18
points on the curve (9): (ωjp, ωkq) and (ωjq, ωkp), 0 ≤ j , k ≤ 2.

The famous Mordell-Weil Theorem says that the group of rational
points on an elliptic curve is finitely generated, and it also applies
to curves over C(t) such as this. Under the definition given above,
Viète’s solution turns out to be −2(x , y) and the small solution is
(x , y) + 2(ωx , ωy).
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We recall notation and give our joint results with Rouse. Suppose

x3 + y3 = p3(x , y) + q3(x , y) =

(
f (x , y)

h(x , y)

)3

+

(
g(x , y)

h(x , y)

)3

and the solution has degree d . Then:

q(x , y) = p(y , x) (up to powers of ω).

p, q ∈ Q(ω)(x , y).

There is a solution in Q(x , y) iff d is a square (e.g., d = 4, 9.)

Any two solutions commute under composition, up to
multiplication by cube roots of unity.

Any solution of degree 3k is the composition of the small
solution with a solution of degree k.

No monomial occuring in any f , g , h has an exponent ≡ 2
mod 3.
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The set of solutions form the group Z + Z + Z3, with
generators (x , y), (ωx , ωy) and torsion involving ωj . The
solution m(x , y) + n(ωx , ωy) has degree m2 −mn + n2.

The subgroup Z + Z is actually ring-isomorphic to Z[ω],
under the operations of addition of points and composition.

Let a(d) denote the number of solutions of degree d , then

1 + 6
∞∑
d=1

a(d)xd =
∞∑

m=−∞

∞∑
n=−∞

xm2−mn+n2 =⇒ (Lorenz,Ramanujan)

∞∑
d=1

a(d)zd =
∞∑
i=0

(
x3i+1

1− x3i+1
− x3i+2

1− x3i+2

)
.

The number of solutions of degree d is the number of factors
of d congruent to 1 mod 3 minus the number congruent to 2
mod 3. Any degree has the form m2

∏
j pj , pj ≡ 1 mod 3.
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I can’t resist mentioning one more cubic identity.

(βx2 − xy + βy2)3 + β(−x2 + βxy − y2)3 =

(β2 − 1)(βx3 + y3)(x3 + βy3)

Since the sum is a function of {x3, y3}, it follows that

(βx2 − xy + βy2)3 + β(−x2 + βxy − y2)3 =

(βωx2 − xy + βω2y2)3 + β(−ωx2 + βxy − ω2y2)3 =

(βω2x2 − xy + βωy2)3 + β(−ω2x2 + βxy − ωy2)3.

It can be proved that any nontrivial sum of cubes of quadratic
forms f 3

1 + f 3
2 + f 3

3 + f 3
4 = 0 is, after an invertible linear change of

variables, based on the equality of two of the above pairs.

The proof requires another talk.
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Recall (3), proved by Desboves (1880) and Elkies (1995): let

f1(x , y) = x2 +
√

2 x y − y2, f2(x , y) = i x2 −
√

2 x y + i y2

f3(x , y) = −x2 +
√

2 x y + y2, f4(x , y) = −i x2 −
√

2 x y − i y2

Then
∑4

i=1 f 5
i = 0.

This was derived by taking the sum

3∑
k=0

(ikx2 + i2ka x y + i3ky2)5 = 40a(a2 + 2)(x7y3 + x3y7),

and setting first a =
√
−2 and then y 7→ iy .

The interplay of the roots of unity makes it unsurprising that

4∑
i=1

fi =
4∑

i=1

f 2
i = 0

as well. This is actually, however, too much of a good thing.
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Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



Recall (3), proved by Desboves (1880) and Elkies (1995): let

f1(x , y) = x2 +
√

2 x y − y2, f2(x , y) = i x2 −
√

2 x y + i y2
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√

2 x y + y2, f4(x , y) = −i x2 −
√

2 x y − i y2
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Note that the equations
∑

fi =
∑

f 2
i = 0 define the intersection

of a plane and a sphere in C4. This is, projectively, a curve. Unless
something special is going on, this curve shouldn’t contain another
curve (f1, f2, f3, f4).

What’s special is that the ideal generated by
∑4

i=1 xi and
∑4

i=1 x2
i

contains
∑4

i=1 x5
i . Proof in a bit.

If f4 = −(f1 + f2 + f3), then the sum of squares becomes essentially
a Pythagorean triple, which we know how to parameterize:

f 2
1 + f 2

2 + f 2
3 + (f1 + f2 + f3)2 = 0 =⇒

(f1 − f3)2 + 2(f1 + f3)2 = −(f1 + 2f2 + f3)2 “ =⇒ ”

f1 − f3 = x2 − y2,
√

2(f1 + f3) = 2xy ,−i(f1 + 2f2 + f3) = x2 + y2

We can solve for the fi ’s to recover the Desboves-Elkies example.
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We could also try to synch a solution. Let ω = ζ3.

f1 = x2 + axy + y2

f2 = ωx2 + axy + ω2y2

f3 = ω2x2 + axy + ωy2

=⇒ f1 + f2 + f3 = 3axy , f 2
1 + f 2

2 + f 2
3 = 3(a2 + 2)x2y2.

Let f4 = −3axy ; 3(a2 + 2) + (3a)2 = 6(2a2 + 1) = 0 implies
a =

√
−1/2 to give another solution. Again set y → iy , then

(x2 +
√

1/2 xy − y2)5 + (ωx2 +
√

1/2 xy − ω2y2)5+

(ω2x2 +
√

1/2 xy − ωy2)5 + (−3
√

1/2 xy)5 = 0.

This is actually the same as the Desboves-Elkies (3) after a change
of variables. Felix Klein smiles.
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The relationship of
∑

x1,
∑

x2
1 ,
∑

x5
i has a larger explanation.

Theorem

If p(x1, x2, x3, x4) is any symmetric form of degree 5, then
p ∈ I = (

∑4
i=1 xi ,

∑4
i=1 x2

i ).

Proof.

Let ej denote the usual j-th elementary symmetric function. Since∑4
i=1 xi = e1 and

∑4
i=1 x2

i = e21 − 2e1, I = (e1, e2). By Newton’s
theorem, any symmetric quintic has the form c1e51 + c2e31e2
+c3e21e3 + c4e1e4 + c5e1e22 + c6e2e3, and so is in I .

The proof works because 5 cannot be written as a non-negative
integer combination of 3 and 4, a case of the Frobenius problem.
Let m and n be relatively prime positive integers > 1 and let
A(m, n) be the set of positive integers which cannot be written as
am + bn for non-negative integers (a, b). Sylvester showed in 1884
that max A(m, n) = mn −m − n.
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More generally, let Mn,k(x1, . . . , xn) =
∑n

j=1 xk
j . A similar

argument to the foregoing proves the following theorem.

Theorem

Suppose x ∈ Cn is such that Mn,r (x) = 0 for r = 1, . . . , n − 2. If
N ∈ A(n − 1, n), then Mn,N(x) = 0 as well. Alternatively, if N is
not expressible as a(n − 1) + bn, then

n∑
j=1

xN
j ∈

 n∑
j=1

xj ,
n∑

j=1

x2
j , . . . ,

n∑
j=1

xn−2
j

 .

Note that if n = 4, then A(3, 4) = {1, 2, 5}. This completes the
derivation of (3). The largest element in A(n− 1, n) is n2− 3n + 1.
For n ≥ 5, the intersection ∩n−2r=1Mn,r has positive genus and so has
no polynomial parameterization: despite the Theorem, there are no
versions of Desboves-Elkies in higher degrees.
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Mathematica and I spent some time searching for other
“interesting” synching identities, and found this one:

4∑
k=0

(ζk5 x2 + a x y + ζ−k5 )14 =

f (a)(x24y4 + x4y24) + g(a)(x19y9 + x9y19) + h(a)x14y14

where f (a) = 455(1 + a2)(1 + 11a2) and

g(a) = 10010a(1 + a2)(5 + 25a2 + 11a4 + a6).

Miraculously, f (i) = g(i) = 0, and h(i) = 57. It follows that if
fk(x , y) = ζk5 x2 + i x y + ζ−k5 y2 for 0 ≤ k ≤ 4 and
f5(x , y) =

√
−5 x y , then

5∑
j=0

f 14
j (x , y) = 0. (10)
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By this time, you won’t be surprised to hear me say that Felix
Klein wouldn’t have been surprised.
I don’t know why (10) is true. Possible hint:

5∑
j=0

f 2k
j (x , y) = 0 for k = 1, 2, 4

and M6,1 = M6,2 = M6,4 = 0 =⇒ M6,7 = 0.
The question is: why do the f 2

j ’s lie on this intersection?

Mark Green has shown that if r entire (let alone polynomial)
functions φj satisfy

∑r
j=1 φ

N
j = 0, then N ≤ r(r − 2); 14 is not

that much less than 24, so this might well be an extremal example.
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In 1884, Felix Klein wrote a famous book on the icosahedron, and
he used an idea which seems to make plausible some of these
identities. He first observed the Riemann sphere, which gives a 1-1
map of the unit sphere and the extended complex plane:

(a, b, c) ∈ S2 ⇐⇒ a + ib

1− c
∈ C∗

u + iv ∈ C ⇐⇒
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,

u2 + v2 − 1

u2 + v2 + 1

)
∈ S2

The north pole corresponds to the point at infinity.

What Klein does now is associate a point on the sphere with a
linear form in (x , y) whose “root” is the image of the point:

(a, b, c) ∈ S2 ⇐⇒ x −
(

a + ib

1− c

)
y , , c 6= 1,

(0, 0, 1) ⇐⇒ y .
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Klein’s goal was to start with a set of points of a regular polytope
and take the product of the linear forms associated with its
vertices. Linear changes of variable correspond to fractional linear
changes in the roots:

p(x , y) = µ
∏

(x − λjy) =⇒

p(ax + by , cx + dy) = µ′
∏(

x −
(

dλj − b

a− cλj

)
y

)
.

Every rotation of the sphere corresponds to a change in variables
of this product, though not every change in variables gives a
rotation of the sphere. Since regular polytopes have many
rotational symmetries, Klein found that the resulting polynomials
has many symmetries as well.

Rather than taking the full product, look at antipodal pairs of
vertices, leading to a quadratic form.
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(a, b, c) ⇐⇒ a + ib

1− c
:= re iθ;

−(a, b, c) ⇐⇒ −a + ib

1 + c
= −r−1e iθ

and the resulting product

(x − re iθy)(x + r−1e iθy) = x2 − (r − r−1)e iθxy − e2iθy2

is perfect for the sort of synching we’ve been doing. In particular,
two antipodal regular d-gons parallel to the xy -plane yield the
familiar-looking set of quadratics

{ζ jd · (ζ
−j
d x2 − (r − r−1)xy − ζ jdy2) : 0 ≤ j ≤ d − 1}.
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Here’s what happens for the octahedron:

(±1, 0, 0) ⇐⇒ ±1 ⇐⇒ x − y , x + y ⇐⇒ x2 − y2

(0,±1, 0) ⇐⇒ ±i ⇐⇒ x − iy , x + iy ⇐⇒ x2 + y2

(0, 0,±1) ⇐⇒ 0,∞ ⇐⇒ x , y ⇐⇒ xy

In other words, you get the Pythagorean parameterization (up to
constants.)

If you start with a cube with vertices at(
±
√

2

3
, 0,±

√
1

3

)
,

(
0,±

√
2

3
,±
√

1

3

)

you get the four Desboves-Elkies quadratics.

And if you rotate the cube so that vertices are at the north and
south poles, then you get the alternate formulation.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



Here’s what happens for the octahedron:

(±1, 0, 0) ⇐⇒ ±1 ⇐⇒ x − y , x + y ⇐⇒ x2 − y2

(0,±1, 0) ⇐⇒ ±i ⇐⇒ x − iy , x + iy ⇐⇒ x2 + y2

(0, 0,±1) ⇐⇒ 0,∞ ⇐⇒ x , y ⇐⇒ xy

In other words, you get the Pythagorean parameterization (up to
constants.)
If you start with a cube with vertices at(

±
√

2

3
, 0,±

√
1

3

)
,

(
0,±

√
2

3
,±
√

1

3

)

you get the four Desboves-Elkies quadratics.

And if you rotate the cube so that vertices are at the north and
south poles, then you get the alternate formulation.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



Here’s what happens for the octahedron:

(±1, 0, 0) ⇐⇒ ±1 ⇐⇒ x − y , x + y ⇐⇒ x2 − y2

(0,±1, 0) ⇐⇒ ±i ⇐⇒ x − iy , x + iy ⇐⇒ x2 + y2

(0, 0,±1) ⇐⇒ 0,∞ ⇐⇒ x , y ⇐⇒ xy

In other words, you get the Pythagorean parameterization (up to
constants.)
If you start with a cube with vertices at(

±
√

2

3
, 0,±

√
1

3

)
,

(
0,±

√
2

3
,±
√

1

3

)

you get the four Desboves-Elkies quadratics.

And if you rotate the cube so that vertices are at the north and
south poles, then you get the alternate formulation.

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



Six pairs of antipodal vertices of the icosahedron may be considered
as the north/south poles and two rings of horizontal pentagons.

These give the sum of six quadratics to the 14th power equalling
zero, and so far provide the best “reason” for their existence.

If you want to play with these ideas after the talk, the icosahedron
can be rotated so the six pairs occur as two parallel sets of
equilateral triangles. The golden ratio will show up in the
associated identity.

Many, many times.

The tetrahedron doesn’t have antipodal pairs of vertices. I haven’t
found anything interesting yet for the quadratics based on its
edges, or the cubic forms based on its faces.

The dodecahedron gives 10 quadratics whose 14th powers are
dependent. I don’t know any a priori reason for the repeated
appearance of “14”.
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Many, many times.

The tetrahedron doesn’t have antipodal pairs of vertices. I haven’t
found anything interesting yet for the quadratics based on its
edges, or the cubic forms based on its faces.

The dodecahedron gives 10 quadratics whose 14th powers are
dependent. I don’t know any a priori reason for the repeated
appearance of “14”.
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Here’s (4) again:∑
1≤i<j≤4

(xi + xj)
4 + (xi − xj)

4 = 6(x2
1 + x2

2 + x2
3 + x2

4 )2.

This can be proved by noting that

(a + b)4 + (a− b)4 = 2a4 + 12a2b2 + b4

and counting the number of times a given monomial occurs on
each side.

Liouville used a version of this in 1859 to make the first advance
on Waring’s Problem since Lagrange’s Four-Square Theorem.

Theorem

Every positive integer n is a sum of at most 53 4-th powers of
integers.
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Proof.

Write n = t + 6m, where 0 ≤ t ≤ 5. By Lagrange, write
m =

∑4
i=1 x2

i , and then write xi =
∑4

j=1 y2
ij . Then

n = t +
4∑

i=1

6(y2
i1 + y2

i2 + y2
i3 + y2

i4)2

which by (4) is a sum of t ≤ 5 copies of 14 and 4× 12 summands
of the form (yij ± yik)4.

For example, 1859 = 5 + 6 ∗ 309 = 5 + 6 ∗ (162 + 62 + 42 + 12) is
one such representation, and after writing 16, 6, 4, 1 each as a sum
of squares, one is led to

1859 = 6 · 44 + 2 · 34 + 9 · 24 + 17 · 14 + 19 · 04.
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This is not the best way to study Waring’s problem, and 53 is far
from optimal. (For example, 1859 = 64 + 2 ∗ 44 + 3 ∗ 24 + 3 ∗ 14,
with 9 cubes.)

Mathematicians in the rest of the 19th century gave similar
formulas for degrees 6, 8 and 10 and then, as usual, Hilbert
destroyed their cottage industry when he solved Waring’s Problem
in 1909. A key step was this non-constructive theorem:

Theorem

For all n, r , let N =
(n+2r−1

n−1
)
. Then there exist 0 < λk ∈ Q and

αkj ∈ Z, 1 ≤ k ≤ N, 1 ≤ j ≤ n, such that

N∑
k=1

λk(αk1x1 + · · ·+ αknxn)2r = (x2
1 + · · ·+ x2

n )r
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The basic idea is of the proof to find the “average” 2r -th power,
where the coefficients range over the unit sphere Sn−1, by
computing

F2r (Sn−1, µ; x) :=

∫
u∈Sn−1

(u1x1 + · · ·+ unxn)2rdµ

where µ is the unit rotation-invariant measure.

If a, b ∈ Rn and ||a|| = ||b||, then by the rotational invariance,
F2r (Sn−1, µ; a) = F2r (Sn−1, µ; b).
Thus F2r (Sn−1, µ; x) is a function of ||x || and since it is a form in
the xj ’s of degree 2r ,

F2r (Sn−1, µ; x) = cn,r (x2
1 + · · ·+ x2

n )r

for some positive constant cn,r . This constant can be computed by
choosing x to be a unit vector and doing the integral.
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The next step is approximate the integral with a Riemann sum and
use Carathéodory’s Theorem to show that each such sum can be
replaced by one with at most N terms. Ultimately, an application
Bolzano-Weierstrass gives a convergent subsequence. The
argument that the coefficients are rational is subtle!

It is sometimes convenient to ignore the algebraic constraints, and
absorb the λk ’s into the powers by writing

(βk1x1 + · · ·+ βknxn)2r = λk(αk1x1 + · · ·+ αknxn)2r .

The rest of the talk will give some applications.
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Suppose

N∑
k=1

(βk1x1 + · · ·+ βknxn)2r = (x2
1 + · · ·+ x2

n )r .

Dvoretzky’s Theorem in functional analysis says that any
infinite-dimensional Banach space contains isometric copies of
every `n2. Hilbert Identities can be used for concrete finite-
dimensional examples. Bounds on the length of a Hilbert identity
correspond to bound on the dimensions of the corresponding
spaces.

For example, consider the vectors uj = (β1j , . . . , βNj) ∈ RN ,
1 ≤ j ≤ n. For any x ∈ Rn, ||

∑
j xjuj ||2r2r is the left side, which by

the right side is ||x ||2r2 . In other words, the n-dimensional subspace
< uj >⊂ `N2r is isometric to `n2.
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Suppose a set S and non-negative measure µ are given. An exact
quadrature formula for (S , µ) of degree d is an expression∫

u∈S
p(u) dµ =

N∑
k=1

λkp(αk),

which holds for all forms p of degree d . (Conventionally, αk ∈ S
and λk ≥ 0.)

Such an equation holds if and only if it holds for all monomials:
x i = x i1

1 · · · x in
n of degree d . Taken on the right hand side, we get

the monomials in a sum of d-th powers of linear forms. It’s getting
kind of late in the talk, so I’ll skip the derivation and get to the
punch-line. I hope you trust me with the constants.
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Theorem

Suppose µ is the rotation-invariant unit measure on Sn−1 and
λk ∈ R, αk ∈ Rn. Then∫

u∈Sn−1

p(u) dµ =
N∑

k=1

λkp(αk),

is an exact quadrature formula of degree d for (Sn−1, µ) iff

N∑
k=1

λk(αk1x1 + · · ·+ αknxn)d = cn,d(x2
1 + · · ·+ x2

n )d/2,

where cn,2r =
∏r

j=1
n+2j
1+2j and cn,2r+1 = 0.
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If q is a form of degree d − 2i , then (
∑

x2
j )iq is a form of degree d

which agrees with q on Sn−1, so an exact quadrature formula of
degree d is also one of degree d − 2i . If d is odd, the integral
vanishes. By writing f as a sum of homogeneous pieces, we get

Corollary

If ∫
u∈Sn−1

p(u) dµ =
N∑

k=1

λkp(αk),

is an exact quadrature formula of degree d, then for every
polynomial f (homogeneous or not) of degree ≤ 2bd2 c+ 1,

∫
u∈Sn−1

f (u) dµ =
N∑

k=1

λk
2

(
f (αk) + f (−αk)

)
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These establish the centrality of Hilbert Identities for quadrature
formulas on Sn−1. Another corollary uses an old trick method from
numerical analysis.

Corollary

In any Hilbert Identity, N ≥
(n+r−1

n−1
)
.

Proof.

If N <
(n+r−1

r−1
)
, then there exists a non-zero form h of degree r so

that h(αk) = 0, 1 ≤ k ≤ N. (Count the number of monomials.)
Now put p = h2 into the quadrature formula; we have∫

u∈Sn−1

h2(u) dµ =
N∑

k=1

λkh2(αk),

which is > 0 on the left, and 0 on the right. Contradiction!
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How good an estimate is this? For r = 2 and n = 4,
(2+4−1

4−1
)

= 10.
Liouville’s (4) has 12 terms. A while back, I proved that 10 is
impossible, but 11 is possible:

12(x2
1 + x2

2 + x2
3 + x2

4 )2

= 6(x1 + x2 + x3 + x4)4 +
4∑

(x2 ±1 x3 ±2 x4)4+

2∑
(x1 ±

√
2x2)4 +

2∑
(x1 ±

√
2x3)4 +

2∑
(x1 ±

√
2x4)4.

The right-hand side is symmetric in {x2, x3, x4}, but not in x1.

I suspect this solution is unique, up to orthogonal changes of
variable, but have been unable to prove it, in efforts spanning four
different decades.
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If a Hilbert Identity has minimal length, then the summands have
some special properties

Corollary

If
N∑

k=1

(βk1x1 + · · ·+ βknxn)2r = (x2
1 + · · ·+ x2

n )r .

and N =
(n+r−1

n−1
)

is minimal, then(
n∑
`=1

β2k`

)r

=
1

N

r∏
j=1

n + 2j

1 + 2j

is independent of k.
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This leads to the final interpretation of Hilbert Identities. In a
beautiful series of papers in the 1970s, Delsarte, Goethals and
Seidel introduced the idea of the spherical design.

A set X = {v1, . . . , vN} ∈ Rn is a spherical t-design if for every
polynomial p(x1, . . . , xn), deg p ≤ t, we have∫

Sn−1 f (x) dµ∫
Sn−1 dµ

=
1

N

N∑
j=1

f (vj).

That is, the average of p on the sphere is equal to the average of p
on these points: quadrature formulas with equal weights.

There are some wonderful theorems about spherical designs.
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The vertices of a regular d-gon are a spherical t-design in R2

if d > t.

For all (n, t), there exist spherical t-designs in Rn.

If t = 2s, then N ≥
(n+s−1

n−1
)

+
(n+s−2

n−1
)
; if t = 2s + 1, then

N ≥ 2
(n+s−1

n−1
)
, and there exists N(n, t) so that for all

N ≥ N(n, t), such a t-design with N points exists (Seymour
and Zaslavsky).

If d = 2s + 1 and N = 2
(n+s−1

n−1
)
, then X is called a tight

spherical design. Such a tight spherical design must be
antipodal and so its coefficients give a Hilbert Identity of
minimal length.

Your favorite symmetric pointset in Rn is a spherical design.

A tight spherical 2s + 1-design in Rn defines the maximal
number of lines through the origin in Rn which make only s
different angles with each other.
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Tight spherical 2s + 1-designs exist whenever n = 2 and
2s + 1 = 3 and for (2s + 1, n) = (5,7), (5,23), (7,8), (7,23),
(11,24). Otherwise, they are impossible unless 2s + 1 = 5 and
n = u2 − 2 (u odd) or 2s + 1 = 7 and n = 3v2 − 4. Some
non-existence results exist, but many cases remain open.

No new tight spherical designs have been found in the last 30
years. All known tight spherical designs are unique, up to
rotation. All known proofs of this are ad hoc.

Tight spherical designs lead to beautiful Hilbert Identities, as
in (4). Take the indices below as cyclic mod 7, then

7∑
i=1

∑
±

(xi ± xi+1 ± xi+3)4 = 12(x2
1 + · · ·+ x2

7 )2.

This comes from the finite projective plane of order 2.
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The tight 11-design in R24 is derived from the minimal vectors
in the Leech lattice and has the following hilarious implication.
There is an isometric copy of `242 in `9828010 , but not in `9827910 .

Using the Schönemann coordinates for an icosahedron and

letting Φ =
√
5+1
2 , so that Φ4 + 1 = 3Φ2, we have

6Φ2(x2 + y2 + z2)2 = (Φx + y)4 + (Φx − y)4+

(Φy + z)4 + (Φy − z)4 + (Φz + x)4 + (Φz − x)4.
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Here’s an identity which combines the previous discussion with
most of your favorite small integers.

Theorem

If the equation

(x2
1 + x2

2 + x2
3 )2 =

r∑
k=1

(akx1 + bkx2 + ckx3)4 (11)

holds, then r ≥ 6. If r = 6, then this equation is true if and only if
the 12 points ±(ak , bk , ck) are the vertices of a regular icosahedron
inscribed in a sphere with center 0 and radius (5/6)1/4.
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Viète, F., The Analytic Art, translated by T. Richard Witmer
(1591, 1983)

(with J. Rouse) On the sums of two cubes, to appear in the
Int. J. Number Theory, available at the arXiv: 1012.5801 or
www.math.uiuc.edu/∼reznick/cubic13111f.pdf

For (3):

Klein, Felix, Vorlesungen über das Ikosaeder und die
Auflösung der Gleichungen vom 5ten Grade (1884); English
Translation: Lectures on the Icosahedron; and the Solution of
Equations of the Fifth Degree (1914)

Patterns of dependence among powers of polynomials,
DIMACS Ser. in Discrete Mathematics and Theoretical
Computer Science, 60 (2003), 101-121

Bruce Reznick University of Illinois at Urbana-Champaign The secret lives of polynomial identities



References

For (2):
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