Math 448 Homework 5 Due Friday, October 1, 2010

This is the next-to-last homework assignment on material that will be on the first test.

(ungraded) §2.3 – 1, 3, 5, 7, 9, 11 WolframAlpha: Ask for \(\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \, dx \) for your choice of polynomials \(p, q \), where \(\deg p \leq \deg q + 2 \). Mathematica knows Cauchy’s Theorem!

1. (graded) §2.3 – Problems 2 and 4.
2. (graded) §2.3 – Problems 10 and 12.
3. and 4. (graded) §2.3 – Problems 14, 15 and 16. (These are closely linked, and 15b isn’t phrased well. The function \(f(x, y) \) has a strict local maximum at \((x_0, y_0)\) if there exists \(r > 0 \) so that \(f(x_0, y_0) > f(x, y) \) for all points \((x, y) \neq (x_0, y_0)\) whose distance from \((x_0, y_0)\) is less than \(r \). Please note that in #16, the condition that \(f \neq 0 \) is a necessary hypothesis: if \(f(z) = z \), then \(|f|\) has a strict local minimum at \(z = 0 \). This suggests that whatever method you might want to apply won’t work if \(f \) takes the value zero.)
5. (graded) (E) Evaluate the following integrals, where \(C \) denotes the circle \(|z| = 2\), taken in the usual counterclockwise direction;
 \[
 \frac{1}{2\pi i} \int_C \frac{\cos z}{z} \, dz; \quad \frac{1}{2\pi i} \int_C e^{43z}(z-1)^5 \, dz.
 \]
6. and 7. (graded) (E) Use Cauchy’s formula to evaluate
 \[
 \int_{|z|=1} \frac{dz}{(4z-1)(z-4)},
 \]
 being careful about factors of 4, \(2\pi i \), etc. Then substitute \(z = e^{i\theta} \) into your answer to find specific real numbers \(a, b, c \) so that your answer implies that
 \[
 \int_0^{2\pi} \frac{d\theta}{a + b \cos \theta} = c.
 \]
8. (bonus) This problem isn’t hard if you look at it the right way.
 a. Suppose \(C \) is a simple, piecewise smooth (not necessarily closed) contour. Prove that \(\int_C z \, dz = 0 \) implies that \(\int_C z^3 \, dz = 0 \).
 b. Find a simple, piecewise smooth contour \(C \) with the property that \(\int_C z \, dz = 1 \) and \(\int_C z^3 \, dz = 0 \).
9. and 10. (bonus) Let \(D \) consist of the complex plane minus the negative real axis. Let \(f(z) = \text{Exp}(\frac{1}{4} \text{Log} \, z) \) on \(D \); specifically, if \(z = re^{it} \), where \(-\pi < t < \pi\), let
 \[
 f(re^{it}) = r^{1/4}e^{it/4}.
 \]
 (This defines a “branch” of \(z^{1/4} \).) Use the method of Theorem 3, p. 109, to construct an explicit anti-derivative for \(f \) on \(D \), using \(z_0 = 1 \) as your “basepoint”. Hint: the easiest integrations come from connecting 1 to \(z = re^{it} \) by the arc from 1 to \(e^{it} \), followed by the ray from \(e^{it} \) to \(re^{it} \).