1. (graded) §3.3 – 4a, 4c.
2. (graded) §3.3 – 11, 12.
3. (graded) (E) Find the first three terms of the Taylor series of \(f(z) = z^i \) at \(z = 1 + i \).

Unevaluated expressions such as \((1 + i)^i\) should not appear in your answer. (Here, \(z^i = e^{i \log(z)} \), where \(\log(z) \) is as before.) This could have been on an earlier homework; I wanted to complete your collection of old exam problems.

4. (graded) (E) Determine the linear fractional transformation \(T(z) = \frac{az + b}{cz + d} \) so that \(T(0) = 1 \), \(T(1) = i \) and \(T(\infty) = -1 \), and determine \(T(i) \).

5.&6. (graded) (E) Suppose

\[
T(z) = \frac{z + i}{z + 1}.
\]

a. Determine \(T(0), T(1), T(-1), T(i), T(-i), T(1 + i) \) and \(T(\infty) \).

b. Determine the images of the real axis, the imaginary axis and the unit circle under \(T \). (These might not be as simple as the examples given in class.)

c. Find (with explanation) the image of the first quadrant \(\{x + iy : x, y \geq 0\} \) under \(T \).

7. (graded) What is the name of the author of the textbook. This is not a trick question, but a way of making the homework shorter.

8. (bonus) Suppose \(f \) is an entire function satisfying \(1 \leq |f(z)| \leq 2 \) for \(|z| = 1 \). Suppose there exists exactly one \(z_0 \in \mathbb{C} \) so that \(f(z_0) = (2 + i)z_0^2 \). Determine (with proof) \(f'(z_0) \).

(This is a twisted version of something you already know how to do.)

9. (bonus) Suppose \(f \) is analytic in \(|z| < 3 \), and \(f(-1) = f(1) = 0, f(0) = 4 \). Prove that there exists \(z_0 \) with \(|z_0| = 2 \) and \(|f(z_0)| \geq 12 \). Suppose further that \(f(2) = 12i \). Determine \(f(2i) \).

10. (bonus) Suppose

\[
T(z) = \frac{az + b}{cz + d}
\]

is a linear fractional transformation, and \(r_1, r_2, r_3, r_4 \) are distinct complex numbers with the property that \(T(r_1) = r_2, T(r_2) = r_1 \) and \(T(r_3) = r_4 \). What are the possible value or values for \(T(r_4) \)? (There are several different valid approaches to this problem.)