1. We have \(f : [1, 1] \to \mathbb{R} \) if \(x < 17 \) for all \(x \), and
\[
g(x) = x f(x), \quad \text{so} \quad g(x) < 17 x.
\]
Since \(g(0) = 0 \) and \(f(0) = 0 \), so
Show that \(g \) is continuous, do we use the \(\varepsilon - \delta \) definition.

Suppose \(\varepsilon > 0 \) is given
Let \(\delta = \frac{\varepsilon}{17} \). Then
\[
x < 0 (\varepsilon) \Rightarrow x < 17 \delta = \frac{\varepsilon}{17}
\]
so
\[
|g(x) - g(0)| = |g(x)| < 17 \delta = \frac{\varepsilon}{17}.
\]
The real theorem of course is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.

The corollary of this is that \(f(x) \leq M \) in an open interval.
4. Observe \(N = 2 \cdot \frac{\varepsilon}{5} + 3 \cdot \frac{\varepsilon}{5} = 2 \cdot \frac{\varepsilon}{5} + 3 \cdot \frac{\varepsilon}{5} < \varepsilon \)

My choice of \(\frac{\varepsilon}{5} \) will be determined by \(\varepsilon \).

Let \(\varepsilon_n = \frac{\varepsilon}{5^n} \).

For any \(\varepsilon > 0 \), take \(n \) such that \(\frac{\varepsilon}{5^n} < \varepsilon \).

We already know that
\[
2f_n + 3g_n = 2f + 3g \text{ on } [1, 7]
\]

Is it uniform?

Consider \(\sum_{n=1}^{N} f_n(x) \).

\[
\left| f_n(x) - f(x) \right| < \frac{\varepsilon}{5^n}, \quad x \in [1, 7], \quad n \leq N
\]

\[
\left| g_n(x) - g(x) \right| < \frac{\varepsilon}{5^n}, \quad x \in [1, 7], \quad n \leq N
\]

So if \(n \geq N \geq N(x, N) \),
\[
\left| f_n(x) - f(x) \right| + \left| g_n(x) - g(x) \right| < 2 \cdot \frac{\varepsilon}{5^n} + 3 \cdot \frac{\varepsilon}{5^n} = \varepsilon
\]

So convergence is uniform.

5a. So for each \(p \in E \) we have an open set
\[
B(p, \varepsilon) : x \in B(p, \varepsilon) \Rightarrow \left| f(p) \right| < \varepsilon
\]

(M depends on \(p \)).

And \(E = \bigcup_{p \in E} B(p, \varepsilon) \)

Since \(E \) is compact, it is contained in a finite union
\[
E = \bigcup_{j=1}^{N} B(p_j, \varepsilon)
\]

cd. If \(\left| f(p) \right| < M \), then
\[
\left| f(x) \right| < \max(M, \ldots, M_n)
\]

It follows that for all \(x \in E \),
\[
\left| f(x) \right| < \max(M_1, \ldots, M_n).
\]

This is an example of the usefulness of compact spaces.

5b. Let \(C = \mathbb{R} \), \(f(x) = x \).

For any \(x \in C \), take \(r = 1 \).

\[
|f(x)| \leq |x| + 1 \quad \forall x \in \mathbb{R}
\]

So with \(M = |x| + 1 \), \(f \) is locally bounded. However, \(f \) is not bounded on \(\mathbb{R} \) itself.

6. (Exercises)

My sequence is \(\{x_n \} \):
\[
x_1, x_2, x_3, \ldots, a_1, a_2, a_3, \ldots
\]

(\(a_n \) because \(a_1, a_2, \ldots \in \mathbb{R} \)).

Appears in \((b) \).

(b) Assume \(l \) is a cluster point.

\(c) \) If \(x < a_1 \) and \(\delta = \frac{a_1 - x}{2} \), then no points of the sequence satisfy \(x - \delta < x \).

(d) If \(a_n \to L \) and \(y > L \); otherwise,
\[
y \neq L, \quad \delta = \frac{y - L}{2}, \quad \text{no points of the sequence are within } \delta \text{ of } y.
\]

(e) Suppose \(z \) is a cluster point.
\[
\text{Consider } (z - \delta, z + \delta)
\]

Thus is an example of the usefulness of compact spaces.
The points of \((0,1)\) make

Theorem 1. There is no \(A\) not coinciding with \(A\).

Proof. Let \(A\) be the union of \(A_1, A_2, \ldots, A_n\), where each \(A_i\) is a subset of \(A\). Then \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

- \(A_1\), \(A_2\), \(\ldots\), \(A_n\) are all subsets of \(A\).
- \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Thus, \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Corollary. There is no \(A\) not coinciding with \(A\).

Proof. Let \(A\) be the union of \(A_1, A_2, \ldots, A_n\), where each \(A_i\) is a subset of \(A\). Then \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

- \(A_1\), \(A_2\), \(\ldots\), \(A_n\) are all subsets of \(A\).
- \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Thus, \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Theorem 2. If \(A\) is not coinciding with \(A\), then there is no \(A\) not coinciding with \(A\).

Proof. Let \(A\) be the union of \(A_1, A_2, \ldots, A_n\), where each \(A_i\) is a subset of \(A\). Then \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

- \(A_1\), \(A_2\), \(\ldots\), \(A_n\) are all subsets of \(A\).
- \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Thus, \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Corollary. There is no \(A\) not coinciding with \(A\).

Proof. Let \(A\) be the union of \(A_1, A_2, \ldots, A_n\), where each \(A_i\) is a subset of \(A\). Then \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

- \(A_1\), \(A_2\), \(\ldots\), \(A_n\) are all subsets of \(A\).
- \(A\) is the union of \(A_1, A_2, \ldots, A_n\).

Thus, \(A\) is the union of \(A_1, A_2, \ldots, A_n\).