1. Suppose \(\sup(S) = M \). Then

(i) \(x \in S \Rightarrow x \leq M \)

(ii) If \(x \in S \Rightarrow x \leq y \), then \(M \leq y \).

Let \(T = aS + b = \{ as + b : s \in S \} \) and \(a > 0 \).

I want to show that \(\sup(T) = aM + b \).

Let's repeat the steps:

(i) \(t \in T \Rightarrow t = as + b \), \(s \leq S \).

(ii) \(t = as + b \leq aM + b \). \(\square \)

(b) Suppose \(t \in T \Rightarrow t \leq y \). Then \(aS + b \leq y \) for all \(s \), or

\[S \leq y/a \] for all \(s \).

Thus \(y/a \) is an upper bound for \(S \), and so by (ii),

\[M \leq y/a \Rightarrow aM \leq y - b \Rightarrow aM + b \leq y \]

This completes the proof. There may be other ways to do this, but they will be equivalent.

2. \(x_0 = 6 \), \(x_{n+1} = 6 + \sqrt{x_n} \).

(a) To prove: For all \(n \), \(x_n < 9 \).

Base case \(x_0 = 6 < 9 \). \(\square \)

Suppose \(x_n < 9 \), then

\[x_{n+1} = 6 + \sqrt{x_n} < 6 + \sqrt{9} = 6 + 3 = 9 \]

So the induction is immediate.

3. Suppose: \(S = \{ x : r < d(a, x) < 2r \} \)

and suppose \(y \in S \). Then \(r < d(a, y) < 2r \).

Let \(\varepsilon = \min (d(a, y) - r, 2r - d(a, y)) \).

Then \(\varepsilon > 0 \), and suppose \(2 \in B(y, \varepsilon) \). Then

\[d(z, y) < \varepsilon \]

Thus, \(d(a, z) \geq d(a, y) - d(y, z) > d(a, y) - \varepsilon \geq d(a, y) - (d(a, y) - r) \)

and

Calculating

\[x_n \text{ is easy} \]

on the bottom with "next!"

Note: I feel not
expect you to do this!
4. We have by Cauchy Schwarz
\[
\left(\sum_{c=1}^{n} a_c^2 b_c \right) \left(\sum_{c=1}^{n} a_c b_c^2 \right) \\
\leq \left(\sum_{c=1}^{n} a_c^2 \right)^{\frac{1}{2}} \left(\sum_{c=1}^{n} b_c^2 \right)^{\frac{1}{2}} \\
= \left(\sum_{c=1}^{n} a_c^2 \right)^{\frac{1}{2}} \left(\sum_{c=1}^{n} b_c^2 \right)^{\frac{1}{2}}
\]
We also have
\[
\sum_{c=1}^{n} a_c^2 \geq \sum_{c=1}^{n} a_c b_c
\]
Thus,
\[
\left(\sum_{c=1}^{n} a_c^2 b_c \right)^2 \leq \left(\sum_{c=1}^{n} a_c b_c \right)^2 \\
\leq \left(\sum_{c=1}^{n} a_c \right) \left(\sum_{c=1}^{n} b_c^2 \right)
\]
as requested.

5. If \(d_1(x, y) \leq d_2(x, y) \leq 5d_1(x, y) \)

We want to make sure that
\[
d_1(p, x) < r \implies d_2(p, x) < \frac{r}{50}
\]
so looking carefully at the inequalities,
\[
d_1(p, x) < \frac{1}{50} \implies d_2(p, x) < \frac{r}{50} = \frac{r}{10}.
\]
The key's here are:
\(A \subseteq B \) means \(x \in A \implies x \in B. \)
The other inequality gives
\[
d_1(p, x) > \frac{1}{50} \implies d_2(p, x) > \frac{r}{3} \cdot \frac{1}{10},
\]
so if \(\frac{1}{50} < d_1(p, x) < \frac{1}{10}, \) then
\[
d_2(p, x) \text{ is } > \frac{r}{10} \text{ or } < \frac{r}{10},
\]
but otherwise use \(d_1. \)

6. There are (at least) three proofs I can think of.
(I). If \(m \in \{1, 2, 3, \ldots \}, \) then take
\[
e_0 = m, \ N = 0 \text{ and } m = e_0 + 1.
\]
Suppose \(|m| > 1. \) Then the integer \(n \) is defined by
\[
m = \begin{cases}
3n+1 & m = 0 \text{ and } 3 \\
3n+2 & m = 1 \text{ and } 3 \\
3n+3 & m = 2 \text{ and } 3
\end{cases}
\]
and \(|m| \leq \frac{m+1}{3} \leq \frac{m_{\text{max}}}{3} \leq m. \)
By induction,
\[n = \frac{\Sigma_{k=0}^{n} k^3}{k^3}, \text{ so} \]
\[m = \frac{\Sigma_{k=0}^{n} k^3}{n} \]
\[m = \frac{\Sigma_{k=1}^{n+1} k^3}{n+1} \]

(II) Let
\[S_n = \sum_{k=0}^{n} k^3 \]
\[S_0 = \{ -1, 0, 15 \} \]
\[S_1 = \{ -1, -3, -3, -3, 0, 1, 0, 1, 2, 3, 4 \} \]
Prove by induction that
\[S_n = \left\{ -\frac{3^{n-1}}{2}, \frac{3^{n+1}}{2} \right\} \cup \mathbb{N} \]
\[\mathbb{Z} - \frac{3^{n+1}}{2}, -\frac{3^{n+1}}{2}, \ldots, \frac{3^{n+1}}{2}, \ldots \]
The key is not
\[S_{n+1} = (S_n - 3^n) \cup \mathbb{N} \]
and the sets fit together perfectly. Given this, the proof is routine.

(III) If you know generating functions:
Look at
\[(x^{-1} + x + x^2)(x^3 + x + x^2) \]
\[\cdots + (x^{3^n} + x + x^2) \]
\[= x^{-(1+3+\cdots+3^n)} \prod_{k=0}^{n} (1 + x^{3k} + x^{2+3k}) \]
\[= -\left(\frac{1}{1-x} + \frac{1-x^{3n+3}}{1-x}\right) \]
\[= \frac{1}{1-x} - \frac{1-x^{3n+3}}{1-x} \]
\[= \frac{1}{1-x} \]

7. This used to be important
For easy proof, choose any constant.

Note that \(a > b \) if \(a - b > 0 \).

If \(a > b \), then
\[\frac{\sqrt{a+b} - a - b}{2} = \frac{a+b-a-b}{2} > 0 \]
\[\frac{\sqrt{a-b} - a - b}{2} = \frac{a+b-a-b}{2} = 0 \]
The same happens if \(a < b \). (Skipped)

Also, \(a > b \) if \(-b > -a \).
So, \(b = \min(a, b) = -\max(-a, -b) \).

Since this isn't graded, I'll skip the case \(a > b \).
12. \(X \cup Y = \mathbb{R}, \ X, Y \neq \emptyset \)
\(x \in X, y \in Y \Rightarrow x < y \).
(This implies \(X \cap Y = \emptyset \) and so \(Y = x \).)
Since \(Y \) is non-empty, there exists \(y \in Y \), all \(y \) is an upper bound for \(X \).
Thus \(X \) has a least upper bound \(a \).
What do we know?
1. \(x \in X \Rightarrow x \leq a \)
2. \(x \in X \Rightarrow x \in Y \Rightarrow y \) is an upper bound for \(X \Rightarrow a \leq x \), since \(a \) is a least upper bound.
Let's clarify this and suppose \(x \neq a \). Then
\(x \in X \Rightarrow x < a \)
\(x \neq X \Rightarrow x > a \)
Since every \(x \in \mathbb{R} \) is either in \(X \) or not in \(X \), these implications go both ways:
\(x < a \Rightarrow x \in X \)
\(x > a \Rightarrow x \in X \).

(to be overproven)

If \(x < a \), \(x \leq x \), then
\(k > a \), a contradiction.
If \(x > a \), \(x \in \mathbb{R} \), then
\(x < a \), a contradiction.

If \(a \in X \), then
\(x = \{ x \in \mathbb{R} : x \leq a \} \)
\(= \{ x \in \mathbb{R} : x < a \} \cup \{ a \} \).
If \(a \in X \), then
\(x = \{ x \in \mathbb{R} : x < a \} \).

Bonus Half-Note.

If \(E = \mathbb{R}^n \), \(d(x) \) is defined as follows:
\[p = (x_1, \ldots, x_n) \]
\[q = (y_1, \ldots, y_n) \]
\[d(x, p) = \max \{ |x_i - y_i| \} \]
\(1 \leq i \leq n \)

Considering (1), (2), (3) are understandable to show (4), let \(r = (z_1, \ldots, z_n) \).
Then
\[d(x, p) = \max \{ |x_i - z_i| \} \]
\(1 \leq i \leq n \)
\[= |x_j - z_j| \text{ for some } j \]
\[\leq |x_j - y_j| + |y_j - z_j| \text{ (usual triangle inequality) } \]
\[\leq \max \{ |x_i - y_i| \} + \max \{ |y_i - z_i| \} \]
\(1 \leq i \leq n \)
\[= d(x, p) + d(x, q, r) \]