The maximum possible score on Problem 6 is 1\frac{1}{2} points, so it is partially a regular question and partially extra credit.

1. *Rosenlicht* Ch. IV – 16.

2. *Rosenlicht* Ch. IV – 33.

4. (E) Suppose \(f : [0, 1] \rightarrow [0, 1] \) is a continuous function. Show that there exists \(x \in [0, 1] \) so that \(f(x) = x \). Hint: what can you say about \(g(x) = f(x) - x, \ g(0) \) and \(g(1) \)? Remark: this is a classical type of exam problem, which appears with variations on several homeworks as well, without hints in the future!

5. (E) Let

\[
f_n(x) = \sum_{k=1}^{n} \frac{x^k}{k(k+1)}.
\]

Prove, from the definition, that \((f_n) \) converges uniformly to a continuous function \(f \) on \([-1, 1]\). As a hint for estimating \(f_n(x) - f_m(x) \), note that \(\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1} \) and that \(|x^k| \leq 1 \) on \([-1, 1]\).

6. Partially extra credit, worth 1\frac{1}{2} points.

Suppose \(f([0, 1]) = [0, 1] \) is onto and \(f \) is monotone non-decreasing; that is, \(x < y \) implies \(f(x) \leq f(y) \). One goal of this problem is to prove that a monotone function without “jumps” must be continuous, and another is to give an alternate proof of the continuity of functions like the Cantor function.

(i) Prove that \(f(0) = 0 \) and \(f(1) = 1 \). (This is easy if you think about it.)

(ii) Suppose \(u \in (0, 1) \) and \(\epsilon > 0 \) is given. Prove that there exists \(\delta > 0 \) so that \(|x - u| < \delta \) implies that \(f(u) - \epsilon < f(x) < f(u) + \epsilon \). Hint: because \(f \) is onto, there exist \(v, w \) such that \(f(v) = \max\{0, f(u) - \epsilon/2\} \) and \(f(w) = \min\{1, f(u) + \epsilon/2\} \).