Paired with itself; not is $x \neq e$ so that $x \neq e$.

What This means is that

For x such that $x^2 = e$, if 10 is even, G has a subgroup of order 2. (Last sentence is a remark, not part of solution)

1b. 6/15 - 47

Suppose G is an abelian group and $H = \{ x : x^2 = e \}$.

We need to prove that H is a subgroup.

1) Is it closed? $x \in H$, $y \in H$ implies

$x^2 = e$, $y^2 = e$. What about

xy? $(xy)^2 = (xy)(xy) = x(yx)y = x(xy)y = x^2y^2 = e$. (\checkmark)

2) Is the identity there? $e^2 = e$ (\checkmark).

3) If $x \in H$, is $x^{-1} \in H$?

$x^2 = e \Rightarrow (x^{-1})^2 = x^{-1}x = x^{-1}$, so

$(x^{-1})^2 = x^2 = e$. (\checkmark)

All conditions are satisfied.

Remark: Note that for the nonabelian group S_3, it might not happen that e is a subgroup. The square of any flip is e, but the product of the different flips is a rotation, which doesn't belong in H.

2. $\mathbb{Z}/12$,

$x = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \}$

We saw this on HW 1.

You showed that $\mathbb{Z}/12$ is a cyclic group, with generators $[3]_{12}$.

In $[3]_{12}$, $[27]_{12}$ is cyclic, all subgroups are cyclic.
keeping these in mind, the subgroups are:

\[\{1/4, 1\} \cup \{1/3, 2/3, 1\} \cup \{1/2, 1/2, 1\} \cup \{1/6, 5/6, 1\} \]

The identity alone

\[\{1/3, 1/3, 1/3\} \]

generated by \[[1/3] = [3] \]

cut \[\{1/3, 1/3, 1/3\} \]

generated by \[[1/3] = [3] \]

3. Duplicate - Free Problem

4. \(G = \langle a \rangle \), \(a^{15} = 1 \).

We have a theorem that says:

If \(H = \langle a^k \rangle = \langle a \rangle \)

is a subgroup of \(G \) of order \(a \).

- \(k = 7 \), \(\text{gcd}(7, 15) = 1 \), so \(a^7 \) is a subgroup of \(G \) of order \(7 \). (Check: \(4 \cdot a^7 = a^{14} = a^{15} = 1 \).

b) \(k = 5 \), \(\text{gcd}(5, 15) = 1 \), so \(a^5 \) is a subgroup of \(G \) of order \(5 \).

5a. \(\Phi \) is an isomorphism, so \(\Phi(1/3, 1/3, 1/3) = \Phi(1/3) \ast \Phi(1/3) \ast \Phi(1/3) \)

... (continued on the next page)