It’s ok to work together, but don’t copy without comprehension. The symbol (E) means that at least part of this problem is a former exam question.

1. (E) Consider the integers \mathbb{Z} with the binary operation \circ defined by $a \circ b = a + b - 4$.

 a. Prove that \circ is associative.
 b. Find the identity element for \circ.
 c. Find an inverse element (with respect to \circ) for $a \in \mathbb{Z}$.

2. (E) Let $G = (\mathbb{Z}/6\mathbb{Z}, \oplus)$ and $H = ((\mathbb{Z}/9\mathbb{Z})^*, \odot)$. Write down one explicit isomorphism Φ from G to H; that is, determine the values of $\Phi([0]_6)$, $\Phi([1]_6)$, $\Phi([2]_6)$, \ldots as elements in H. Your answer should include an explanation of why you know that Φ is an isomorphism.

3. and 4. (E) (counts as two problems) Define in the usual way the set $S = (\mathbb{Z}/5\mathbb{Z})^* = \{[1]_5, [2]_5, [3]_5, [4]_5\}$, and define the binary operation \ast on S by $[a]_5 \ast [b]_5 = [ab]_5$. (For example $[1]_5 \ast [4]_5 = [2 \cdot 1 \cdot 4]_5 = [8]_5 = [3]_5$.) For your convenience, the multiplication table is given above. (The table shows that \ast is a binary operation, and you do not have to prove this!) Instead, your task in this problem is to prove that $G = (S, \ast)$, with this strange definition, is a group.

 a. Show that \ast is associative in G.
 b. Determine the identity element in (S, \ast). (The table will be helpful.)
 c. Find the inverses of the four elements in S. (I want four answers here.)
 d. Write down enough powers of $[1]_5$ to show that (S, \ast) is a cyclic group and explain your answer.

Don’t forget page 2!
5. (Followup to 9/4 Worksheet) Let \(G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} = \{([a]_2, [b]_4)\} \), and define the operation \(*\) by

\[
([a]_2, [b]_4) * ([c]_2, [d]_4) = ([a + c]_2, [b + d]_4).
\]

Thus, for example,

\[
([1]_2, [2]_4) * ([1]_2, [3]_4) = ([2]_2, [5]_4) = ([0]_2, [1]_4),
\]

because \(2 \equiv 0 \pmod{2}\) and \(5 \equiv 1 \pmod{4}\).

a. Determine \(\langle ([1]_2, [1]_4) \rangle\), \(\langle ([1]_2, [2]_4) \rangle\) and \(\langle ([1]_2, [3]_4) \rangle\).

b. Show that \(H = \{([0]_2, [0]_4), ([0]_2, [2]_4), ([1]_2, [0]_4), ([1]_2, [2]_4)\}\) is a subgroup for \(G\), and give an isomorphism from \(H\) to the Klein 4-group \(V\).