There seems to be some confusion in the way I presented the subgroups of $C_2 \times C_2$, so I’d like to run through it again.

We had

$\{e_G, a\} \times \{e_H, b\}$

where $a \ast_G a = e_G$ and $b \ast_H b = e_H$. So there are four elements

$\{(e_G, e_H), (a, e_H), (e_G, b), (a, b)\}$.

Each group has two subgroups. I’ll call them

$G_1 = \{e_G\}, G_2(=G) = \{e_G, a\},$

$H_1 = \{e_H\}, H_2(=H) = \{e_H, b\}$.

This gives four subgroups of $G \times H$:

$G_1 \times H_1 = \{(e_G, e_H)\}$

$G_2 \times H_1 = \{(e_G, e_H), (a, e_H)\}$

$G_1 \times H_2 = \{(e_G, e_H), (e_G, b)\}$,

$G_2 \times H_2 = G \times H$.

Bruce Reznick University of Illinois at Urbana-Champaign Math 417 – Twelfth Day – Class
My point was only that $G \times H$ has one more subgroup which is not of that form: $\{(e_G, e_H), (a, b)\}$.

Under the familiar isomorphism to V which takes

$$(e_G, e_H) \mapsto I, (a, e_H) \mapsto X, (e_G, b) \mapsto Y, (a, b) \mapsto Z.$$

these five subgroups are $\{I\}, \{I, X\}, \{I, Y\}, \{I, X, Y, Z\}, \{I, Z\}$.

There is nothing special about Z! It is just the image of (a, b) under the isomorphism. Remember that X, Y, Z are somehow equivalent to each other, and

$$(e_G, e_H) \mapsto I, (a, e_H) \mapsto Y, (e_G, b) \mapsto Z, (a, b) \mapsto X.$$

is also an isomorphism.
This leads to another important piece of terminology. Suppose G is a group. An isomorphism of G to itself is called an \textit{automorphism}. To distinguish these, I’ll use the letter Ψ, rather than Φ. (Personal choice, not in the book. Automorphisms aren’t in the book this early, except as a homework problem.)

Every group has an automorphism! Define Ψ_0 on G by: $\Psi_0(g) = g$ for all g. Then Ψ_0 is a bijection and $\Psi_0(g) \ast \Psi_0(h) = \Psi_0(g \ast h)$.

Remember that automorphisms are isomorphisms, so we can specialize our early results, which I’ll quickly review;

$$\Psi(e) = e, \quad \Psi(g^{-1}) = (\Psi(g))^{-1}.$$

Suppose now that $G = C_n$, a cyclic group. It turns out that the automorphisms of C_n depend very much on the properties of n as an integer.
THEOREM If $G = C_n$, then G has $\phi(n)$ different automorphisms, given by

$$x \in G \implies \Psi(x) = x^k, \quad \gcd(k, n) = 1.$$

PROOF Suppose Ψ is an automorphism of $G = \langle a \rangle$. Since $\Psi(a) \in G$, there is a k so that $\Psi(a) = a^k$. It follows that

$$\Psi(a^2) = \Psi(a)\Psi(a) = a^k a^k = a^{2k},$$

$$\Psi(a^3) = \Psi(a)\Psi(a) = a^{2k} a^k = a^{3k}$$

and so on, so $\Psi(a^i) = a^{ik}$. It is now easy to check that $\Psi(a^i)\Psi(a^j) = \Psi(a^{i+j})$.

The only condition we need to look at is that Ψ be a bijection, in other words,

$$\{e, a^k, a^{2k}, \ldots, a^{(n-1)k}\} = \{e, a, a^2, \ldots, a^{n-1}\}$$

This will happen if and only if the order of a^k in G is equal to n. But we have seen that this order is $\frac{n}{\gcd(n, k)}$, so we get an automorphism if and only if $\gcd(n, k) = 1$.

\[\Box\]
If you didn’t want to use the that theorem, you could say this: if Ψ is a bijection, there must be an r so that $a^{rk} = a$; that is, $rk \equiv 1 \mod n$, and this implies $gcd(k, n) = 1$. And, if $a^{rk} = a$, $(\Psi(a^r) = a)$, then $a^{(ir)k} = a^i$, or $\Psi(a^{ir}) = a^i$.

What are the automorphisms of $V = \{I, X, Y, Z\}$? If Ψ is an automorphism, then $\Psi(I) = I$, and it is easy to check that if

$$\{\Psi(X), \Psi(Y), \Psi(Z)\} = \{X, Y, Z\},$$

then Ψ will be an automorphism, so there are $3!$ different automorphisms.

It is not hard to show that for any group G, the set of automorphisms forms a group under composition. It is often called $Aut(G)$. I will only talk about this if there is class interest!
The last topic today is the subgroups of $C_2 \times C_4$. To simplify notation, write $C_2 = \{e, a\}$ and $C_4 = \{e, b, b^2, b^3\}$, where $a^2 = e$ and $b^4 = e$. (The identities are technically different.) If you prefer, you can make $a = [1]_2$ and $b = [1]_4$ as an arithmetic version of this.

Then the elements of the group are

$$\{(e, e), (e, b), (e, b^2), (e, b^3), (a, e), (a, b), (a, b^2), (a, b^3)\}$$

What is the order of (a^j, b^k)? It’s the smallest r so that $(a^j, b^k)^r = (e, e)$; that is,

$$a^{jr} = e, b^{kr} = e \iff jr \equiv 0 \mod 2, \quad kr \equiv 0 \mod 4.$$

It isn’t terrible hard to see that (e, e) has order 1, (e, b^2), (a, e), (a, b^2) all have order 2, and the other elements: (e, b), (e, b^3), (a, b), (a, b^3) all have order 4. It follows that the subgroups of shape $\langle x \rangle$ are:
\(\{(e, e), (e, e), (e, b^2)\}, \{(e, e), (a, e)\}, \{e, e\}, (a, b^2)\} \)

\(\{(e, e), (e, b), (e, b^2), (e, b^3)\}, \{(e, e), (a, b), (e, b^2), (a, b^3)\} \)

A subgroup of \(C_2 \times C_4 \) will have order dividing \(|C_2 \times C_4| = 8\), and so be 1,2,4,8. The only subgroup of order 1 is \((e, e)\), and the only subgroup of order 8 is the whole group.

Furthermore, if \(H \) is a subgroup of order 2, then it has to look like \(\{(e, e), x\} \), where \(x \) has order 2, so it’s in the list above. In the remaining case, \(H \) has order 4. If it has an element of order 4, then that’s \(H \), and it’s in the list.

What’s left? There are four elements of order less than four, and this is the only possibility. You’ve already proved that

\(\{(e, e), (e, b^2), (a, e), (a, b^2)\} \)

is a subgroup!
WORKSHEET PROBLEM
For a change, this one is a bit more theoretical. It’s not hard if you follow the definitions carefully.

1. Prove that in any group, for any $g, h \in G$,

$$(gh)^{-1} = h^{-1}g^{-1}$$

Hint: Consider the product $(gh)(h^{-1}g^{-1})$ and apply associativity.

2. Suppose G is an abelian group and define $\Psi(g) = g^{-1}$. Prove that Ψ is an automorphism of G.

That is: prove that Ψ is a bijection and $\Psi(gh) = \Psi(g)\Psi(h)$ for all $g, h \in G$.
1. By associativity,
\[(gh)(h^{-1}g^{-1}) = g(hh^{-1})g^{-1} = geg^{-1} = gg^{-1} = e.\]

2. If \(g \in G\), then \(g = (g^{-1})^{-1}\), hence \(\Psi(g^{-1}) = g\), so \(\Psi\) is onto or surjective. If \(\Psi(g) = \Psi(h)\), then \(g^{-1} = h^{-1}\), so \(g = (g^{-1})^{-1} = (h^{-1})^{-1} = h\), so \(\Psi\) is one-to-one or injective. Thus \(\Psi\) is a bijection.

Finally, since \(G\) is an abelian group,
\[\Psi(gh) = h^{-1}g^{-1} = g^{-1}h^{-1} = \Psi(g)\Psi(h).\]

Bonus. Suppose we don’t know anything about \(G\), but \(\Psi\) is an automorphism, then
\[\Psi(gh) = \Psi(g)\Psi(h) \implies h^{-1}g^{-1} = g^{-1}h^{-1}\]
\[\implies (h^{-1}g^{-1})^{-1} = (g^{-1}h^{-1})^{-1} \implies gh = hg.\]
So, if \(\Psi\) is an automorphism, then \(G\) is abelian.