Math 417 – Tenth Day – Class

Bruce Reznick
University of Illinois at Urbana-Champaign

September 16, 2020
I have gotten several useful emails suggesting that I review some of the ideas of the last lecture. Suppose, for the moment, that G is a finite group. (Most of what I say still applies when it’s infinite, but this will allow us to count.)

Suppose $G > H$ so H is a subgroup of G. We can look at the cosets, which come in two flavors, the left cosets gH and the right cosets Hg. Basically everything we can prove about left cosets can also be proved about right cosets. Some facts:

(i) G can be written as a union of left cosets which are disjoint. The number of cosets, $r = [G : H]$, is equal to $|G|/|H|$.

$$G = a_1H \cup \cdots \cup a_rH; \quad i \neq j \implies a_iH \cap a_jH = \emptyset.$$

(You can do the same thing with right cosets.) Two left cosets are disjoint, because $z \in xH \cap yH \implies xH = yH$.
(ii) Are cosets subgroups? Well, $eH = H$ is a subgroup, and it contains e. The other cosets can’t contain the identity, and so they can’t be subgroups.

(iii) When G is not abelian, it is possible for the left cosets and the right cosets to have different arrangements of the elements of G.

If H is a special kind of subgroup, then $gH = Hg$ as sets, for every $g \in G$. Ironically, this special kind of subgroup is called a normal subgroup. Every subgroup of an abelian group is normal. If $[G : H] = 2$, then H turns out to be normal. We’ll see, soon but not today, that $\{\rho_0, \rho_2\}$ is a normal subgroup of D_4.

(iv) How do we find all the cosets? One way is to take gH for every element $g \in G$, and eventually you get them all. As a shortcut, once we start with $eH = H$, we pick any $x \in G \setminus H$. We know that x has to be in a coset and it’s in xH, so construct xH. If we’re done, we’re done. If not, look at $G \setminus (H \cup xH)$ to find elements we are still missing, etc.
(v) Here’s an example. Look at $C_8 = \{ e, a, a^2, a^3, a^4, a^5, a^6, a^7 \}$, with $H = \{ e, a^4 \}$.

The theorem tells us that C_8 can be written as a union of disjoint cosets. Let’s say my favorite element is a^5. I don’t see it in a coset yet, so look at $a^5H = \{ a^5 * e, a^5 * a^4 \} = \{ a^5, a^9 \} = \{ a^5, a \}$.

Now I have $H \cup a^5H = \{ e, a^4 \} \cup \{ a^5, a \}$. What’s missing? Well, there are four choices: a^2, a^3, a^6, a^7. Pick one, say a^7, and look at its coset: $a^7H = \{ a^7 * e, a^7 * a^4 \} = \{ a^7, a^{11} \} = \{ a^7, a^3 \}$.

And $H \cup a^5H \cup a^7H = \{ e, a^4 \} \cup \{ a^5, a \} \cup \{ a^7, a^3 \}$. What’s missing? Only a^2, a^6, and $a^2H = \{ a^2 * e, a^2 * a^4 \} = \{ a^2, a^6 \}$. We’re done.

$C_8 = H \cup a^5H \cup a^7H \cup a^2H = \{ e, a^4 \} \cup \{ a^5, a \} \cup \{ a^7, a^3 \} \cup \{ a^2, a^6 \}$.

The order of the cosets and the order of elements in the coset don’t matter: as sets $\{ a^5, a \} = \{ a, a^5 \}$, etc.
(vi) If we are looking for subgroups of G, the first step is to look at $\langle g \rangle$ for every $g \in G$. When G is a cyclic group, these are all the subgroups we find. This was also true for S_3, but not D_4. We can use Lagrange’s Theorem to look at the size of the potential group.

I want to use Lagrange’s Theorem to finish the description of groups of order 6.

What we did the other day was this: Suppose G is a group of order 6 with an element a so that $\{e, a, a^2\}$ are distinct and $a^3 = e$. Suppose b is another element of G and $b^2 = e$. We saw that either $ba = a^2b$ (and G is isomorphic to S_3) or $ba = ab$, (and G is isomorphic to C_6).

Today I’ll make no hypotheses on G, except that $|G| = 6$, and show that these are the only possible groups.
Suppose $x \in G$, then the order of x is 1, 2, 3, 6. First suppose there exists $x \in G$ so that x has order 6. Then $\{e, x, x^2, x^3, x^4, x^5\}$ are distinct, $x^6 = e$, so G is a cyclic group of order 6. Henceforth, we can otherwise assume that there is no element in G of order 6.

We first need a simple result often assigned for homework, even though the proof is not conceptual, and a bizarre computation.

LEMMA If $g \in G \implies g^2 = e$ in a group G, then G is abelian.

PROOF We need to show that $a, b \in G \implies ab = ba$. There's a trick. Since $ab \in G$, $(ab)^2 = e$. Write $(ab)^2 = abab = a(ba)b$. We also know that $a^2 = e$ and $b^2 = e$, so there is a chain of identities, multiplying by a on the left and b on the right:

$(ab)^2 = a(ba)b = e \implies$

$a^2(ba)b = ae \implies bab = a \implies$

$bab^2 = ab \implies ba = ab$. □
Suppose now that G is a group of order 6 and G has no element of order 3 or order 6. I’ll show that this is impossible.

If $x \in G$ and $x \neq e$, then x must have order 2. Pick such an x. G has 6 elements and $\{e, x\}$ only gives 2, so there has to be another element in G, call it y, so e, x, y are all different.

What about xy? If $xy = e$, then $xy = x^2 \implies y = x$. If $xy = x = xe$, then $y = e$. If $xy = y = ey$, then $x = e$. These impossibilities say that $H = \{e, x, y, xy\}$ are all distinct. Look at the multiplication table for H. We know that $x^2 = y^2 = (xy)^2 = e$ and, say $y(xy) = (yx)y = (xy)y = xy^2 = x$. We can fill out the table completely.

\[
\begin{array}{c|cccc}
H & e & x & y & xy \\
\hline
e & e & x & y & xy \\
x & x & e & xy & y \\
y & y & xy & e & x \\
xy & xy & y & x & e \\
\end{array}
\]
Another copy of the Klein 4 group!

What could be wrong with that? Well, H is a subset of G and H is a group, so it’s a subgroup of G, and $|H| = 4$, $|G| = 6$ and 4 doesn’t divide 6.

What does this mean? It means that our assumption that there were no elements of order three leads to a contradiction, so suppose $a \in G$ and a has order 3, $\{e, a, a^2\}$ are in G, and let b be another element of G. Then ab, a^2b have to be in G, because it’s closed under multiplication, and we’ve already shown that $\{e, a, a^2, b, ab, a^2b\}$ are all different.

But now we know something more: we know that $b^2 = e$ or $b^3 = e$. We did the work a few days ago to handle the case $b^2 = e$. Now suppose $b^3 = e$. I won’t need to worry about ba.
Here is the multiplication table

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>a^2</th>
<th>b</th>
<th>ab</th>
<th>a^2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>a^2</td>
<td>b</td>
<td>ab</td>
<td>a^2b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a^2</td>
<td>e</td>
<td>ab</td>
<td>a^2b</td>
<td>b</td>
</tr>
<tr>
<td>a^2</td>
<td>a^2</td>
<td>e</td>
<td>a</td>
<td>a^2b</td>
<td>b</td>
<td>ab</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
<tr>
<td>ab</td>
<td>ab</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
<tr>
<td>a^2b</td>
<td>a^2b</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
</tbody>
</table>

It’s not clear what b^2 is: from looking at the column, it might be e, a, a^2. We’ve already talked about $b^2 = e$, so consider $b^2 = a$ or $b^2 = a^2$. Now, multiplying on the right by b, these imply $b^3 = ab$ or $b^3 = a^2b$. Neither of these is e, so this case is a dead end too, and we’ve run out of cases.
THEOREM If G is a group and $|G| = 6$, then G is either isomorphic to C_6 or isomorphic to S_3.

Since 2,3,5,7 are prime, any group with those orders must be cyclic. We’ve also completely analyzed groups of order 4 and order 6. It turns out that there are five different groups of order 8: we’ve already seen three of them: C_8, D_4, and $(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/4\mathbb{Z})$. We’ll see the other two eventually.

The number of non-isomorphic groups of a given order can get very large, especially when the order is a power of a prime.

There are 14 non-isomorphic groups of order $16 = 2^4$, 267 non-isomorphic groups of order $64 = 2^6$, 56092 non-isomorphic groups of order $256 = 2^8$ and 4948736522 non-isomorphic groups of order $1024 = 2^{10}$.

In fact 99.15% of all the groups of order < 2000 have order 1024.
WORKSHEET PROBLEM 1. (As promised.) Find the left cosets and the right cosets for the subgroup $L = \{\rho_0, \mu_2\}$.

$$
\begin{align*}
\rho_0 &= \begin{pmatrix} 123 \\ 123 \end{pmatrix} = (1)(2)(3), & \rho_1 &= \begin{pmatrix} 123 \\ 231 \end{pmatrix} = (123), \\
\rho_2 &= \begin{pmatrix} 123 \\ 312 \end{pmatrix} = (132), & \mu_1 &= \begin{pmatrix} 123 \\ 132 \end{pmatrix} = (1)(23), \\
\mu_2 &= \begin{pmatrix} 123 \\ 321 \end{pmatrix} = (13)(2), & \mu_3 &= \begin{pmatrix} 123 \\ 213 \end{pmatrix} = (12)(3).
\end{align*}
$$

<table>
<thead>
<tr>
<th>S_3</th>
<th>ρ_0</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>μ_1</th>
<th>μ_2</th>
<th>μ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_0</td>
<td>ρ_0</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>μ_1</td>
<td>μ_2</td>
<td>μ_3</td>
</tr>
<tr>
<td>ρ_1</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_0</td>
<td>μ_3</td>
<td>μ_1</td>
<td>μ_2</td>
</tr>
<tr>
<td>ρ_2</td>
<td>ρ_2</td>
<td>ρ_0</td>
<td>ρ_1</td>
<td>μ_2</td>
<td>μ_3</td>
<td>μ_1</td>
</tr>
<tr>
<td>μ_1</td>
<td>μ_1</td>
<td>μ_2</td>
<td>μ_3</td>
<td>ρ_0</td>
<td>ρ_1</td>
<td>ρ_2</td>
</tr>
<tr>
<td>μ_2</td>
<td>μ_2</td>
<td>μ_3</td>
<td>μ_1</td>
<td>ρ_2</td>
<td>ρ_0</td>
<td>ρ_1</td>
</tr>
<tr>
<td>μ_3</td>
<td>μ_3</td>
<td>μ_1</td>
<td>μ_2</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_0</td>
</tr>
</tbody>
</table>
WORKSHEET SOLUTION

First the left cosets. As always, \(L = L\rho_0 = \{\rho_0, \mu_2\} \) is one of the cosets. I don’t see \(\rho_1 \) so I’ll look at

\[
\rho_1 L = \{\rho_1\rho_0, \rho_1\mu_2\} = \{\rho_1, \mu_1\}.
\]

I don’t see \(\rho_2 \), so I’ll take that:

\[
\rho_2 L = \{\rho_2\rho_0, \rho_2\mu_2\} = \{\rho_2, \mu_3\}.
\]

So the left cosets are

\[
\{\rho_0, \mu_2\}, \quad \{\rho_1, \mu_1\}, \quad \{\rho_2, \mu_3\}.
\]

You could have taken other missing elements, but you should wind up with the same cosets.
Now the right cosets. As always, \(L = L\rho_0 = \{\rho_0, \mu_2\} \) is one of the cosets. I don’t see \(\rho_1 \) so I’ll look at

\[
L\rho_1 = \{\rho_0\rho_1, \mu_2\rho_1\} = \{\rho_1, \mu_3\}.
\]

I don’t see \(\rho_2 \), so I’ll take that:

\[
L\rho_2 = \{\rho_0\rho_2, \mu_2\rho_2\} = \{\rho_2, \mu_1\}.
\]

So the right cosets are

\[
\{\rho_0, \mu_2\}, \quad \{\rho_1, \mu_3\}, \quad \{\rho_2, \mu_1\}.
\]

Recall, the left cosets were

\[
\{\rho_0, \mu_2\}, \quad \{\rho_1, \mu_1\}, \quad \{\rho_2, \mu_3\}.
\]

Again, a partial overlap.