1. Let \(n = \prod p_i^{a_i} \) denote the prime factorization of \(n \). If \(n \) is prime, then \(n = p^1 \) for some prime \(p \).

2. Suppose \(p \) is prime, \(a, b \in \mathbb{N} \) and \(q = \gcd(a, p) \). Then \(q \mid p \) if and only if \(q = 1 \) or \(q = p \). That is: either \(p \mid a \) or \(a \) is relatively prime to \(p \).

3. Facts (well-known and often covered in 347): Every integer \(n \geq 2 \) can be written in a unique way as

\[n = \prod p_i^{a_i}, \quad \text{where} \quad a_i \geq 0 \quad \text{and} \quad p_i \text{ are primes} \]

4. We use the notation \(\ell_p(n) \) to denote the power of a prime \(p \) that divides \(n \). For example, if \(n = 345 = 3 \cdot 5 \cdot 23 \), then \(\ell_3(345) = 1, \ell_5(345) = 1, \ell_{23}(345) = 1 \), and \(\ell_2(345) = 0 \).

In this notation, \(n = \prod p_i^{\ell_p(n)} \).

5. By the usual laws of algebra and the unique factorization theorem (often called the Fundamental Theorem of Arithmetic), we observe that

\[\ell_p(mn) = \ell_p(m) + \ell_p(n) \]

for all primes \(p \).

6. It follows from (5) that \(a \mid b \iff \ell_p(a) \leq \ell_p(b) \) for all primes \(p \).
7. Suppose \(m = \prod_{i=1}^{k} p_i^{a_i}, \quad n = \prod_{i=1}^{k} p_i^{b_i}, \) where \(a_i \geq 0, b_i \geq 0. \)

If \(q = \prod_{i=1}^{r} p_i^{c_i}, \) then \(q \mid m \) and \(q \mid n \) if and only if \(c_i \leq a_i \) and \(c_i \leq b_i \).

That is,

\[q \mid m \iff c_i \leq \min(a_i, b_i), \quad 1 \leq i \leq m. \]

Put another way,

\[\text{gcd}(m, n) = \prod_{i=1}^{r} \min(a_i, b_i). \]

8. Theorem: If \(\text{gcd}(a, c) = 1 \) and \(\text{gcd}(b, c) = 1 \), then \(\text{gcd}(ab, c) = 1. \)

Proof 1:

Note that \(\text{gcd}(a, c) = 1 \) means that any prime \(p \) that divides \(c \) cannot divide \(a \), and \(\text{gcd}(b, c) = 1 \) means that any prime \(p \) that divides \(c \) cannot divide \(b \). If \(p \) is a prime dividing \(ab \), then \(p \) divides \(ab \) or \(p \) divides \(c \), so \(p \) cannot be a prime dividing \(c \).

Proof 2 (Non-Conceptual)

There exist integers \(r, s \) so that \(ar + cs = 1 \) and integers \(t, u \) so that \(bt + cu = 1. \) So,

\[ar + cs = 1 \Rightarrow arb + csb = b \quad \text{and} \quad bt + cu = 1 \Rightarrow (arb + csb) t + cu = 1 \Rightarrow arb + csb + t = 1 \Rightarrow (ab)(rt) + c(sbt + u) = 1. \]

9. The Euler phi function \(\phi(n) \) is defined to be the number of integers \(\alpha \), \(0 < \alpha < n \) for which \(\text{gcd}(\alpha, n) = 1. \)

Example:

\[\phi(4) = 2: \quad \text{gcd}(1, 4) = \text{gcd}(3, 4) = 1, \quad \text{gcd}(2, 4) = 2 \geq 1 \]

\[\phi(8) = 4: \quad \text{gcd}(1, 8) = \text{gcd}(3, 8) = \text{gcd}(5, 8) = \text{gcd}(7, 8) = 1 \]

\[\phi(14) = 6: \quad \text{gcd}(1, 14) = 1, \text{ gcd}(3, 14) = 1, \text{ gcd}(5, 14) = 1, \text{ gcd}(7, 14) = 1, \text{ gcd}(9, 14) = 1, \text{ gcd}(11, 14) = 1 \]
10. Suppose \(p \) is prime and \(m > 1 \). We can compute \(\phi(p^m) \) directly. How can \(\phi(p^m) \) be greater than 1? Then \(g | p^m \), which means that \(g \) is a power of \(p \). Thus, \(\gcd(a, p^m) > 1 \iff p | a \).

How many multiples of \(p \) are there \(\leq p^m \)?

- \(a = p \cdot b \)
- \(0 \leq a < p^m \iff 0 \leq p b < p^m \iff 0 \leq b < p^{m-1} \)

So there are \(p^{m-1} \) multiples of \(p \). Hence, \(\phi(p^m) = p^m - p^{m-1} \).

We have \(4 = 2^2, \phi(4) = 2^2 - 2^1 = 2 \); \(8 = 2^3, \phi(8) = 2^3 - 2^2 = 4 \).

The last page. Here's another one: \(9 = 3^2 \).

- \(a = 0, 1, 2, 3, 4, 5, 6, 7, 8 \).
- I've crossed out the multiples \(\geq 3 \times 3 \), so \(\phi(9) = 3^2 - 3 = 6 \).

11. Suppose \(\gcd(m, n) = 1 \). We claim that \(\phi(mn) = \phi(m)\phi(n) \).

This is a sketch of the proof. We use the Chinese Remainder Theorem, and the fact that \(\gcd(a, mn) = 1 \iff \gcd(a, m) = 1 \iff \phi(a, m) = 1 \). (Why is this fact true? In one direction, \(a \) has no primes (common with \(n \).) In the other, if \(\gcd(a, mn) = 1 \) then \(a \) has no primes (common with \(n \).)"

I have crossed out common factors of 5 and common factors of 6 (diagonal). What's left is 1, 7, 13, 19, 11, 17, 23, 29: \(\phi(30) = \phi(5)\phi(6) = 4 \).