1. Suppose \(x = 0.259259259 \ldots \). Then
\[
1000x = 259.259259259 \ldots - 0.259259259 \ldots \quad \text{(Subtract)} \quad x = 0.259259259 \ldots
\]

\[
999x = 259 \quad \Rightarrow \quad x = \frac{259}{999} = \frac{737}{2797} = \frac{7}{2797}
\]

What's going on?

Another way: \(x = 259.001001001 \ldots \)

And:
\[
0.001001001 \ldots = \frac{1}{10^3} + \frac{1}{10^6} + \frac{1}{10^{9}} + \ldots = \sum_{k=1}^{\infty} \left(\frac{1}{10^3}\right)^k
\]

You should remember from calculus(!) that \(\sum_{k=1}^{\infty} x^k = \frac{x}{1-x} \) (if we are starting at \(k=1 \), not \(k=0 \)), so the sum above is:
\[
\frac{\frac{1}{10^3}}{1 - \frac{1}{10^3}} = \frac{1}{10^3 - 1} = \frac{1}{999} \quad \text{(same thing!)}
\]

2. In general, if \(x \) is a repeating decimal, repeating after \(n \) steps, then \(x \) is a multiple of \(\frac{1}{10^n} \).

\[
\frac{1}{10^n} + \frac{1}{10^{2n}} + \ldots = \frac{\frac{1}{10^n}}{1 - \frac{1}{10^n}} = \frac{1}{10^n - 1}
\]

Thus: \(x = \frac{c}{10^n - 1} \).

3. But you're really interested in the other question:

If \(x = \frac{a}{b} \) (unabout terms), when can we write \(x = \frac{c}{10^n - 1} \)?

So, suppose \(\gcd(a, b) = 1 \) (unabout terms)

\[
\frac{a}{b} = \frac{c}{10^n - 1} \quad \Rightarrow \quad b \cdot 10^n - 1 = c \cdot \gcd(a, 10^n)
\]

This implies that \(b \div 10^n - 1 \), or, that \(10^n - 1 \equiv 0 \mod b \),

so \(10^n \equiv 1 \mod b \). But when can that happen?
Thereom: If \(\text{gcd}(r, d) = 1 \), then there exist \(n \) so that \(r^n \equiv 1 \mod d \).

This is similar to a Euler-type result.

Proof:
Consider the set \(\{1, r, r^2, \ldots, r^{d-1}\} \). There are \(d+1 \) numbers here. Now look at \(1 \mod d \), \(r \mod d \), \(r^2 \mod d \), \ldots, \(r^{d-1} \mod d \). These are \(d+1 \) residue classes, but there are only \(d \) residue classes modulo \(d \). So by the pigeonhole principle, there exists \(c \) \(0 \leq c \leq d \)

so that \(r^c \equiv r^d \mod d \) or \(d | r^c - r^d = r^c(r^{c-1} - 1) \).

If \(c = 0 \), we're done; \(d | r^0 - 1 \) and \(r^0 = 1 \mod d \).

If \(c > 0 \), then \(d | r^c - r^d = r^c(r^{c-1} - 1) \). But \(\text{gcd}(r, d) = 1 \), so \(d | r^{c-1} - 1 \). Again, if \(c = 1 \), we're done. We can keep peeling off factors of \(r \) until we get to \(r^{c_0} = 1 \mod d \).

5 So... if \(\text{gcd}(b, 10) = 1 \), then there exists \(n \) so that \(10^n \equiv 1 \mod b \), and so any fraction \(\frac{a}{b} \) (in \(\mathbb{Q} \)) will have a completely periodic decimal expansion.

6. Lots of questions remain: what is the shortest \(n \)? What if \(\text{gcd}(b, 10) \) isn't equal to 1? Oh yeah.

→ When is \(\text{gcd}(b, 10) = 1 \)? If \(b \equiv 0 \mod 10 \), then \(q = 1, 2, 5 \), so what we want is \(b \equiv 1, 3, 7, 9 \mod 10 \). But 2 and 6 need the last decimal digit of \(b \) is in \(\{0, 2, 4, 6, 8\} \) and \(5 | b \) if the last decimal digit is in \(\{0, 5\} \). We can tangle this not to happen, so the last digit is in \(\{1, 3, 7, 9\} \).

7. Bonus fun fact: Suppose \(\text{gcd}(b, d) = 1 \) and \(10^n \equiv 1 \mod b \) and \(10^n \equiv 1 \mod d \). Then \(10^n - 1 = b \cdot c = d \cdot e \) for some integers \(c, e \). And, \(b \cdot c = d \cdot e \), so \(c = b \cdot k \). Hence \(b \cdot c = d \cdot e \). Finally, \(10^n - 1 = b \cdot k \Rightarrow 10^n \equiv 1 \mod b \).