1. Express \(f(z) = \frac{1}{z^2 + 3} \) as a Taylor series at \(z = 1 \).

2. (E) Let

\[
f(z) = \frac{1}{1 - 2z} + \frac{1}{2 + z}.
\]

Express \(f \) as a Laurent series in \(z + 2 \) which converges for \(|z + 2| > \frac{5}{2}\).

3. Express the \(f \) from the last problem as a Laurent series in \(z + 2 \) which converges for \(0 < |z + 2| < \frac{5}{2} \).

4. §3.8 – 1 (first five) – discuss the singularities at \(\infty \).

5. (E) Classify all singularities (including at \(\infty \)) of the function

\[
f(z) = \frac{1}{e^{z^2} - 1}.
\]

6. (E) Classify all singularities (including at \(\infty \)) of the function

\[
f(z) = \frac{(z - 2)^2 \sin \frac{1}{z}}{z^3 - 4z}.
\]

7. Name one of the authors of our textbook.

8. (E) Suppose \(f \) and \(g \) are entire functions and neither is identically zero. Suppose further that, for all \(z \), \(|f(z)| \leq 2|g(z)|\).

a. Show that the only singularities of \(h = \frac{f}{g} \) are removable ones at the zeros of \(g \). (Hint: you know something about \(h \) in a neighborhood of a zero of \(g \).)

b. Prove that there is a constant \(c \) so that \(f(z) = cg(z) \) for all \(z \). (Hint: use (a) and an important theorem from class, applied to an entire function that is usually equal to \(h \).)

9. §3.8 – 6 (first two).

10. Suppose \(p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) is a polynomial. Find \(R = R(a_{n-1}, \ldots, a_0) \) so that \(|z| \geq R\) implies that \(|p(z)| \geq .99|z|^n\). (See handout of 2/25/00.)

11. Name the other author of the textbook. (It pays to read the last four problems!)

12. p.174 – 7.2. (Hint: Example 2.1, p. 13.)